Evolution of Glycan Diversity

An enzymatic process called as glycosylation facilitate glycans to attach a wide variety of biological molecules through to enhance their role. Glycans are found in archaea, bacteria and eukaryotes, and their varied roles contribute to maintain physical and structural integrity, formation of extracellular matrix, signal transduction, protein folding and information exchange between cells (and pathogens). Glycans are the major molecule on the cell surface and function as the primary point of interaction between a cell and other cells, the extracellular matrix and pathogens. The intensified evolutionary pressure of being at the front lines of cellular collaboration and conflict most likely led to the modification of glycans. Glyco-epitope diversity augments the function of glycans in the group of debilitating and life-shortening disorders known as congenital muscular dystrophy, or CMD. Both ECM and the membrane proteins are highly glycosylated, and O-glycans are vital for proper ECM function and communication between cells and the ECM. Numerous Glycoepitomics forms of CMD are known to result from dysfunctional O-glycosylation of membrane and ECM proteins; however, one-third of CMDs arise from an unknown genetic etiology.

  • Biochemical analysis of lipids & proteins
  • Glycan structural modelling
  • Comparative Glycomics
  • Synthesis systems of glycans
  • Glyco-epitope Diversity
  • Glycoepitomics

Related Conference of Evolution of Glycan Diversity

Evolution of Glycan Diversity Conference Speakers