Modern Organic Chemistry and Applications

Modern Analytical chemistry studies and uses instruments and methods used to separate, identify, and quantify matter. Instruments used are Spectroscopy Mass spectrometry, electrochemical analysis, Thermal analysis, Separation, Hybrid techniques, Microscopy, Lab-on-a-chip. Modern analytical chemistry consists of classical, wet chemical methods and modern, instrumental methods. Pharmaceutical Analytical Chemistry is an interdisciplinary branch between Pharmacy and  Medicinal Chemistry, Pharmacology, Pharmacognosy, Pharmaceutical Analysis, Computational Chemistry & Molecular Modelling, Drug Design, Pharmacokinetics, Pharmacodynamics, Pharmacoinformatics, Pharmacovigilance, Chemo informatics, Pharmacogenomics.  Nano catalysis is recently growing field and is crucial component of sustainable technology and organic transformations applicable to almost all types of catalytic organic transformations. Among nanocatalysts, several forms such as magnetic nanocatalysts, nano mixed metal oxides, core-shell nanocatalysts, nano-supported catalysts; graphene-based nanocatalysts have been employed in catalytic applications. The field of benign organic synthesis has lately embraced various innovative scientific developments accompanied by improved and effective synthetic practices that avoid the use of toxic reagents reactants. Modern theoretical chemistry is the examination of the structural and dynamic properties of molecules and molecular materials using the tools of quantum chemistry, equilibrium and nonequilibrium statistical mechanics and dynamics. Theoretical organic chemistry includes the fundamental laws of physics Coulomb's law, Kinetic energy, Potential energy, the virial theorem, Planck's Law, Theoretical chemistry comprises of Quantum chemistry, Computational chemistry, Molecular modelling, Mathematical chemistry, theoretical chemical kinetics, cheminformatics.    

 

  • Organic synthesis
  • Development of synthetic methodologies
  • Functional organic materials
  • Supramolecular and macromolecular chemistry
  • Physical and computational organic chemistry
  • Heterocycles
  • Bioorganic Chemistry
  • Asymmetric Reactions
  • Metals in Organic Chemistry
  • Graphene
  • Nanostructures from DNA building blocks
  • Tuberculosis diagnostics
  • Fluorination
  • Pyrrolysine

Related Conference of Modern Organic Chemistry and Applications

Modern Organic Chemistry and Applications Conference Speakers