Systems Neuroscience

The intellectual thrust of Systems Neuroscience is that the study of neural coding and dynamics. Neural coding refers to the approach that information is described within the electrical and biochemical signals in neurons (perception and short term memory) and therefore the patterns of synaptic connections (long term memory). Neural dynamics refers to patterns of nerve cell electrical and chemical activity within which information is formed, manipulated and stored. Neural dynamics is concerned in higher cognitive process or in designing and executing sequences, like in speaking or taking part in court game. Neural dynamics additionally represents the psychological feature manipulation of knowledge necessary in mathematics or reasoning. Researchers in systems neuroscience are involved with the relation between molecular and cellular approaches to understanding brain structure and performance, still like the study of high-level mental functions like language, memory, and consciousness (which are the compass of activity and psychological feature neuroscience). Systems neuroscientists generally use techniques for understanding networks of neurons whereas they operate in vivo (e.g. electrophysiology (single or multi-electrode recording), in vivo imaging, fMRI, PET).

  • Advances in high-resolution imaging of brain activity and structure at network
  • Sensory neuroscience
  • Neural oscillation
  • Neural correlate
  • Neural substrate

Related Conference of Systems Neuroscience

Systems Neuroscience Conference Speakers