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Introduction 

levels are not equal across the K populations, we may regard the 
collection of rescaled test statistics X1, X2, …, Xn as a sample from the 
CCS model with ν=(K-1). If mean expression levels are equal across the 
K populations for all genes, then the CCS model reduces to χ2

K-1(0). This 
is why λμ=0 is referred to as the omnibus null hypothesis.

The CCS model may also be applied and the omnibus null 
hypothesis tested, using subsets of X1, X2 …, Xn corresponding to 
biologically meaningful partitions of the genes. For example, suppose 
that n=2000 and that the first 1900 genes correspond to autosomes, 
while the last 100 genes correspond to sex chromosomes [6]. Suppose, 
moreover, that there are g1=10 male subjects with a severe form of a 
disease suspected to be sex-linked, g2=10 male subjects with a mild 
form of the same disease, and g3=10 healthy male subjects. In this case, 
an investigator may wish to fit the CCS model separately to the first 
1900 genes and to the last 100 genes. 

If X1, X2 …, X1900 lead to rejection of the omnibus null hypothesis, 
then the investigator may question whether the disease is in fact sex-
linked. 

Otherwise, the investigator may justifiably discard the first 1900 
genes and focus attention on the last 100. In particular, multiplicity 
adjustments for controlling Type I errors on genewise null hypotheses 
[7-9], can be based on the 100 remaining tests, instead of on the original 
2000. Less stringent multiplicity adjustments will reduce Type II errors 
on the 100 remaining tests. Dai and Charnigo [10,11] have previously 
referred to this concept as gene filtration, although their earlier work 
did not consider the CCS model.
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Abstract
We propose a convenient moment-based procedure for testing the omnibus null hypothesis of no contamination of 

a central chi-square distribution by a non-central chi-square distribution. In sharp contrast with likelihood ratio tests for 
mixture models, there is no need for re-sampling or random field theory to obtain critical values. Rather, critical values 
are available from an asymptotic normal distribution, and there is excellent agreement between nominal and actual 
significance levels. This procedure may be used to model numerous chi-square statistics, obtained via monotonic 
transformations of F statistics, from large-scale ANOVA testing, such as that encountered in microarray data analysis. 
In that context, modeling chi-square statistics instead of p-values may improve detection of differential gene expression, 
as we demonstrate through simulation studies, while also reducing false declarations of the same, as we illustrate in a 
case study on aging and cognition. Our procedure may also be incorporated into a gene filtration process, which may 
reduce type II errors on genewise null hypotheses by justifying lighter controls for Type I errors. 

Consider the mixture model [1-3], with probability density 
function (pdf) 

(1-λ)χ2
ν(0)+λ χ2

ν(μ)   (1)

where 0 ≤ λ ≤ 1, χ2
ν(0) denotes the central chi-square pdf on ν>0 degrees 

of freedom (df), and χ2
ν(μ) denotes the chi-square pdf on ν df, with 

non-centrality parameter μ ≥ 0. We assume that ν is known, while λ and 
μ are unknown. We refer to (1) as the Contaminated Chi-square (CCS) 
model, since we regard χ2

ν(0) as being contaminated by χ2
ν(μ).

In this paper, we present a convenient procedure for testing

H0: λμ=0 versus  H1: λμ>0,  (2)

we analyze its asymptotic and finite-sample properties, and we propose 
estimators of these parameters in the event that H0 is rejected. For a 
reason that will become apparent later, we refer to H0 as the omnibus 
null hypothesis. The CCS model simplifies to χ2

ν(0), if and only if the 
omnibus null hypothesis is true.

To understand how the CCS model and omnibus null hypothesis 
relate to large-scale ANOVA testing, suppose that a microarray 
experiment [4,5] is performed to measure expression levels on each of 
n genes for subjects in independent samples of sizes g1, g2, …, gK from K 
populations. For gene i (1 ≤ i ≤ n), a one-way ANOVA may be conducted 
to test the genewise null hypothesis of equal mean expression levels 
across the K populations. This one-way ANOVA yields a test statistic 
Fi that has a central F distribution on (K-1) numerator and (g1+g2+…
+gK-K) denominator df, under the genewise null hypothesis.

Let Xi denote the rescaled test statistic (K-1) Fi. With large (g1+g2+…
+gK-K), Xi is distributed approximately χ2

K-1(0) under the genewise null
hypothesis, and approximately χ2

K-1(μ), under the genewise alternative
hypothesis, for some μ. We explain this approximation in the Appendix.
If g1, g2, …, gK are not large enough to warrant this approximation,
then a more sophisticated approach may be employed to transform F
statistics into chi-square statistics; one such approach is described in
and used for our case study.

Letting λ denote the proportion of genes for which mean expression 
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The CCS model may potentially be applied in other scenarios 
involving large numbers of tests. For instance, we envisage that the 
CCS model may be employed to analyze data on copy number variation 
[12], or transcript splicing variation [13]. Before presenting our 
testing and estimation procedures, we briefly review some literature 
on mixture modeling. This review is not exhaustive but provides some 
context for this paper, allowing a more explicit articulation of this 
paper’s contributions. The remainder of this paper features empirical 
investigations, including both simulations, and an application to 
real data, as well as a discussion highlighting extensions of the ideas 
contained herein. An appendix explains the rescaling of F statistics into 
approximate chi-square statistics.

Background on Mixture Modeling 
Mixture modeling has been applied to interesting problems in 

disciplines, as varied as epidemiology [14,15], astronomy [16,17], 
biochemistry [18,19], and genetics [20,21]. 

From a technical perspective, mixture modeling is challenging 
because the usual regularity conditions for likelihood-based inference 
are not satisfied, when one is testing the number of components in a 
mixture model [22,23]. In particular, the asymptotic null distribution 
of a likelihood ratio test statistic for the number of components 
corresponds, under mild assumptions, to the supremum of a squared 
truncated Gaussian process defined on a compact parameter space [24-
27].

Although likelihood-based inference is still possible via 
bootstrapping [28], or random field theory [29], more convenient 
approaches have been developed for many scenarios. These include 
Modified Likelihood Ratio (MLR) tests and estimators [30,31], 
Expectation Maximization (EM) tests and estimators [32,33], D tests 
[34,35] and moment-based tests [36].

Allison et al. [37] proposed applying a beta mixture model to the 
p-values from genewise hypothesis tests in a microarray experiment. 
This motivated Dai and Charnigo [10] to present MLR and D tests, for 
whether a beta mixture model for the p-values could be simplified to a 
uniform distribution. Subsequently, Dai and Charnigo [11] proposed 
applying a normal mixture model to the Z scores from genewise 
hypothesis tests (perhaps obtained by transforming T statistics), 
and developed tests for whether the normal mixture model could be 
simplified to a normal distribution. Whether looking at p-values or Z 
scores, an investigator could incorporate genewise hypothesis tests into 
a filtration algorithm.

The present work differs from the preceding efforts in that chi-
square statistics (perhaps obtained by transforming F statistics) are 
now the focus, instead of p-values or Z scores. There are two reasons 
for this focus. First, while some microarray data analyses compare 
two populations on mean expression levels, other microarray data 
analyses compare more than two populations. An example, considered 
in our case study, appears in Blalock et al. [38], who compared three 
populations based on age strata to identify genes related to aging and 
cognition. Since ANOVA does not yield a Z score, the methodology of 
Dai and Charnigo [11] is inapplicable to such a scenario. However, the 
methodology proposed herein is applicable. In fact, the methodology 
proposed herein is still applicable when only two populations are 
compared, since a Z score may be converted to a chi-square statistic 
via squaring.

Second, a beta mixture model for p-values may differ from a uniform 

distribution in a way that is not indicative of systematic differential 
expression. For instance, 0.5 Beta(1,1)+0.5 Beta(2,0.5) corresponds 
to an excess of large p-values, rather than of small p-values. The tests 
of Dai and Charnigo [10] will detect an excess in either direction. 
Thus, the power to detect a specific alternative that is indicative of 
systematic differential expression may be lower than desired. The test 
proposed herein overcomes that limitation by rejecting the omnibus 
null hypothesis in (2), only when there is an excess of large chi-square 
statistics (or, equivalently, small p-values). Indeed, (2) makes explicit 
that the alternative to the omnibus null hypothesis is one-sided. As such, 
the test proposed herein may have better power to detect systematical 
differential expression than the tests of Dai and Charnigo [10].

Testing and Estimation Procedures
Suppose that X1, X2 …, Xn are a random sample from the CCS 

model (1). Our procedure for testing the omnibus null hypothesis in (2) 
is an intersection-union test based on the method of moments. More 
specifically, let 

1

1
k

k n
S n X v−

≤ ≤

= −∑   and    

2 1 1 2 1

1 1 1
2 (1 ) 4k k k

k n k n k n
W v v n X n X n X− − −

≤ ≤ ≤ ≤ ≤ ≤

= + − + −∑ ∑ ∑    (3)

Then S converges in probability to λμ, and W converges in 
probability to λμ2, by the Weak Law of Large Numbers and Slutsky’s 
Theorem. (If one wished to estimate λμp for a generic positive integer 
p, then one could derive an estimator using the first p moments; or if 
both S>0 and W>0, then one might estimate λμp by Wp-1S2-p. However, 
neither theorem 1 nor theorem 2 below involves estimation of λμp, so 
we do not discuss such estimation further).

The preceding considerations motivate us to reject the omnibus 
null hypothesis if S>scrit and W>wcrit, where scrit and wcrit are chosen to 
achieve the desired type I error probability. Theorem 1 below indicates 
how scrit and wcrit may be chosen. Before stating theorem 1, we establish 
some notation.

Let Φ denote the standard normal cumulative distribution function, 
and zc, the c quantile of the same. Let rj denote the jth moment of χ2

ν(0) 
for 1 ≤ j ≤ 4, R the 2×2 matrix, whose ijth entry is ri+j-ri rj, and B the 
2×2 matrix, whose first column is (1,0), and whose second column is 
(-2ν-4,1). 

Theorem 1: Let 0<δ ≤ 1 and 0<ε ≤ 1 satisfy δε =α. Under the 
omnibus null hypothesis,

  1/2 1/2
1 11lim [

n
P S z n aδ

−
−→∞

> and  1/2 1/2
1 22 ]W z n aε α−
−> =         (4)

w here a11 and a22 are the diagonal entries of the 2×2 matrix A=BTRB. 

Moreover, under any fixed alternative (λ,μ)=(c1,c2), with 0<c1 ≤ 1 
and c2>0,

  1/2 1/2
1 11lim [

n
P S z n aδ

−
−→∞

> and  1/2 1/2
1 22 ] 1W z n aε

−
−> =              (5) 

Proof: Under the omnibus null hypothesis, 
1/2 1 1 2 2

1 1
( , 2 )T

k k
k n k n

n n X v n X v v− −

≤ ≤ ≤ ≤

− − −∑ ∑ converges in law to the multivariate 

normal distribution, with mean vector (0,0)T and covariance matrix 
R by the Central Limit Theorem. Then, (S,W)T converges in law to 
the multivariate normal distribution, with mean vector (0,0)T and 
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covariance matrix A by Cramer’s Theorem. The key observation is 
that the off-diagonal entries of A are 0, hence 1/2 1/2

1 11[P S z n aδ
−

−>   and 
1/2 1/2

1 22 ]W z n aε
−

−>   converges to [ ]( ) [ ]( )1 1  1 .=1z zδ ε δε α− −−Φ −Φ =

Under the fixed alternative (λ,μ)=(c1,c2), S converges in 
probability to c1c2>0, and W converges in probability to c1c2

2>0, so 

that 1/2 1/2
1 11[ ]P S z n aδ

−
−≤  and  1/2 1/2

1 22[ ]P W z n aε
−

−≤  converge to 0. Since 

] [1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
1 11 1 22 1 11 1 22      1  ]   [  P S z n a and W z n a P S z n a P W z n aδ ε δ ε

− − − −
− − − −> > ≥ − ≤ − ≤  

, the former must converge to 1. QED.

A few comments are in order. First, one may choose ε=1 (i.e. 
choose wcrit=-∞), and effectively base the test on only S, rather than on 
both S and W. In this case, one may replace z1-δ n

-1/2 a11
1/2 by n-1 qνn,1-

α-ν, where qνn,1-α denotes the 1-α quantile of χ2
νn(0). Then the type 

I error probability is exactly α, for all finite n, not just converging to 
α in the limit. However, a potential problem with this choice is that 
one may reject the omnibus null hypothesis, when W<0. Since W is a 
moment-based estimator of λμ2, moment-based estimation of λ and μ, 
when W<0 leads to the estimator of λ, and/or that of μ, not belonging 
to the appropriate parameter space. However, a remedy is indicated in 
the next comment.

Second, choosing ε ≤ ½ and δ ≤ ½ (i.e., choosing wcrit>0 and scrit>0) 
guarantees that λ and μ may be estimated using moments, when the 
omnibus null hypothesis is rejected. This is described in theorem 
2 and its corollary below. More specific choices of ε and δ can be 
recommended based on power considerations. However, while S and 
W are asymptotically independent under the omnibus null hypothesis, 
they may be correlated when the omnibus null hypothesis is false. Thus, 
analytically evaluating the power, in relation to ε and δ is difficult. 
However, we can gain some insights from simulation studies, which we 
pursue later.

Third, in contrast with a likelihood ratio test for the number of 
components in a mixture model, the testing procedure of theorem 1 
does not require a compact parameter space; note that no upper bound 
for μ was assumed. Moreover, the critical value is known, and thus, 
need not be estimated via resampling or random field theory. On the 
other hand, the problem in (2) is not, strictly speaking, determining the 
number of components in a mixture model. This is because, although 
(1) reduces to one component under the omnibus null hypothesis, (1) 
also reduces to one component, when λ=1 and μ>0.

Now, we address the estimation of λ and μ. Theorem 2 shows that, 
when the omnibus null hypothesis is false, S2/W and W/S are n1/2-
consistent estimators of λ and μ, respectively. To state theorem 2, we 
introduce some more notations. Let mj=E[ X1

j ] for 1 ≤ j ≤ 4, M the 2×2 
matrix, whose ijth entry is mi+j-mi mj, and D the 2×2 matrix whose first 
column is 

((m1 -ν)(2m2-4m1 -2νm1), -(m1 - ν)2)T/(m2+2ν+ν2- 4m1-2νm1)
2 and 

whose second column is (-m2+2ν+ν2, m1-ν)T/ (m1 -ν)2.

Theorem 2: Under any fixed alternative (λ,μ)=(c1,c2), with 0<c1 ≤ 
1 and c2>0,

n1/2(S2/W-c1,W/S-c2)
T converges in law to the multivariate normal 

distribution, with mean vector (0,0)T and covariance matrix DT M D.

Proof: By the Central Limit Theorem, 1/2 1
1 2

1
,( k

k n
X v cn n c

≤ ≤

− − −∑   

( ) ( )21 2 2
1 2 2 1 1 1

1
2  2 )1 4 T

k n
kn X c c c c c c cν ν−

≤ ≤

− −+ − − −∑ converges in 

law to the multivariate normal distribution, with mean vector (0,0)T 
and covariance matrix M. The desired result then follows from Cramer’s 
Theorem. QED.

Although the probability that S<0 or W<0 is nonzero (in which case 
the estimator of λ, and/or that of μ will not belong to the appropriate 
parameter space), with ε ≤ ½ and δ ≤ ½, this event is a subset of 
accepting the omnibus null hypothesis. Hence, if one agrees to take ε 
≤ ½ and δ ≤ ½, as well as to estimate λ and μ, only if the omnibus 
null hypothesis is rejected, then this event will not be encountered in 
practice. The following corollary, an immediate consequence of (5) 
from theorem 1, also demonstrates that such an agreement does not 
disturb the conclusion of theorem 2.

Corollary: Under any fixed alternative (λ,μ)=(c1,c2) with 0<c1 ≤ 1 
and c2>0, the conditional distribution of n1/2 (S2/W-c1,W/S-c2)

T, given that 
W>wcrit and S>scrit converges to the multivariate normal distribution, 
with mean vector (0, 0)T and covariance matrix DT M D.

Simulation Studies
To assess the type I and type II error rates of our testing procedure 

in finite samples, we conducted a number of simulation studies. In 
figure 1 and in the following text, we use this shorthand:

* “CCS 1”: The procedure for testing the omnibus null hypothesis in 
(2) is applied directly to a random sample X1, X2, …, Xn from the CCS 
model (1), with δ=1/2 and ε=1/10. These choices of δ and ε emphasize 
W over S for rejection of the omnibus null hypothesis, requiring only 
that the latter be positive.

* “CCS 2”: Proceed as above, but with δ=ε=0.051/2. These choices 
emphasize W and S equally.

* “CCS 3”: Proceed as above, but with δ=1/10 and ε=1/2. These 
choices of δ and ε emphasize S over W for rejection of the omnibus null 
hypothesis, requiring only that the latter be positive.

* “CB”: A random sample X1, X2 …, Xn from the CCS model 

Type l error rates Power for lambda=0.2 and mu=1

Power for lambda=0.2 and mu=2Power for lambda=0.4 and mu=1
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Figure 1: Displayed are rejection rates for omnibus null hypotheses in the 
simulation studies. Methods CCS1, CCS2, and CCS3, refer to our proposed 
testing procedure with (δ,ε)=(1/2, 1/10), (δ, ε)=(0.051/2,0.051/2), and (δ,ε)=(1/10, 
1/2), respectively. Method CB refers to a modified likelihood ratio test applied 
to p-values, and treated as arising from the contaminated beta model [10]. 



Citation: Charnigo R, Zhou F, Dai H (2013) Contaminated Chi-Square Modeling and Large-Scale ANOVA Testing. J Biomet Biostat 4:157. 
doi:10.4172/2155-6180.1000157

J Biomet Biostat
ISSN:2155-6180 JBMBS, an open access journal

Page 4 of 7

Volume 4 • Issue 1 • 1000157

(1) is transformed by the survival function of the central chi-square 
distribution on ν df to yield “p-values” P1, P2 …, Pn. These are treated 
as if they had arisen from the Contaminated Beta (CB) model with pdf

(1-λ)10<p<1 +λ10<p<1p
α-1(1-p)β-1/B(α,β).                                                 (6)

The MLR test is applied to P1, P2 …, Pn to see whether the CB model 
can be reduced to a uniform distribution [10].

For each n in {50, 100, 250, 500, 1000}, we generated 10,000 random 
samples X1, X2 …, Xn from the CCS model (1) with λμ=0. Each random 
sample X1, X2 …, Xn was meant to mimic a collection of chi-square 
statistics, corresponding to n genes with no differential expression. We 
calculated type I error rates as the numbers of omnibus null hypothesis 
rejections divided by 10,000. The calculated type I error rates are 
displayed in the top left panel of figure 1. For methods CCS1, CCS2, and 
CCS3, these are between 0.0504 and 0.0613 at all n. Thus, the critical 
values for our testing procedure, which were based on the asymptotic 
result of theorem 1, appear satisfactory for finite samples. For method 
CB, the calculated type I error rates decrease from 0.0701 at n=50 to 
0.0338 at n=1000, indicating that the MLR test applied to p-values is 
slightly anticonservative for small n.

We then generated 10,000 random samples, with λ=0.2 and μ=1. 
Each random sample was meant to mimic a collection of chi-square 
statistics, corresponding to a mix of differentially expressed genes 
(20%), with non differentially expressed genes (80%). Power, calculated 
as the number of omnibus null hypothesis rejections divided by 10,000, 
is displayed in the top right panel of figure 1. As anticipated, power 
increases with n for each method. Method CCS3 exhibits better power 
than method CCS2, which in turn is more powerful than method CCS1. 
Method CB appears relatively strong for large n, but comparatively 
weak for small n.

The remaining panels of figure 1 present power for (λ,μ)=(0.4,1), 
(λ,μ)=(0.2,2), (λ,μ)=(0.4,2), and (λ,μ)=(0.2,3), respectively. All of these 
scenarios maintain the relative ordering of methods CCS3, CCS2, and 
CCS1. Roughly speaking, method CB fares well with larger λ, μ, and n, 
but does not perform as well with smaller λ, μ, and n.

We also note that, while convenient to use because no resampling 
is required to ascertain critical values, our moment-based procedure 
for testing the omnibus null hypothesis in (2) may be less powerful 
than other approaches yet to be developed. In particular, we plan to 
investigate in a future manuscript whether the EM test [32,33], can be 
adapted to this setting. If so, then transforming chi-square statistics 
to p-values, and then analyzing p-values using the CB model (6) may 
become even less appealing.

Case Study
Dai and Charnigo [10] applied the CB model (6) to analyze the 

p-values generated from a microarray experiment conducted by 
Blalock et al. [38]. Briefly, gene expression levels were acquired from the 
hippocampal tissue of 30 male Fischer rats divided into three groups 

of 10: “old”, “middle-aged”, and “young”. For each of 8799 genes, a one-
way ANOVA was conducted to compare expression levels across the 
three groups. This produced 8799 F statistics, which in turn yielded 
the p-values. As noted by Dai and Charnigo [10], Blalock et al. [38] 
employed a three-step process to filter the p-values. In each step, genes 
were either retained for or eliminated from further consideration.

A major concern emerged when Dai and Charnigo [10] analyzed 
the p-values and, in particular, employed the MLR test [30], and D 
test [34], to see whether the CB model could be reduced to a uniform 
distribution. For the genes eliminated at step 3, the MLR test and D 
test decisively rejected the omnibus null hypothesis of a uniform 
distribution. However, the fitted model had λ=0.696, α=1.01, and 
β=1.28. Since α>1 does not correspond to an excess of small p-values, 
the departure from a uniform distribution may not indicate differential 
expression, but rather, as suggested by Allison et al. [37], correlations 
among the p-values corresponding to different genes. Thus, the 
alternative to the omnibus null hypothesis of a uniform distribution 
may be too broad if our main interest is in ascertaining differential 
expression. 
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Figure 2: Shown are histograms of chi-square statistics for all 8799 genes 
in the case study for the genes eliminated in steps 1 and 2 of the filtration 
process employed by Blalock et al. [38], and for the genes remaining after 
each of the three steps. Superimposed against each histogram are the fitted 
CCS model for which parameter estimates are displayed in table 1, and the 
null model χ2

2(0). 

With this concern in mind, we revisited these data. However, 
instead of analyzing p-values, we examined chi-square statistics. Since 
the denominator df for the underlying F statistics was not particularly 
large, we modified the F statistics based on the probability integral 
transformation [39], a more sophisticated approach than the rescaling 
described earlier and also consistent with the manner in which Dai and 
Charnigo [11] transformed T statistics to Z scores. More specifically, 
we converted the F statistics to chi-square statistics by successively 
applying the cumulative distribution function (cdf) of the central F 
distribution on 2 and 27 df, followed by the inverse cdf of the central 
chi-square distribution on 2 df.

Figure 2 shows histograms of chi-square statistics for all 8799 genes, 

Based on the results of these simulation studies, we recommend 
taking δ=1/10 and ε=1/2, when applying our testing procedure. If n 
is large, or if λ and μ are anticipated to be large, then one may also 
wish to consider transforming chi-square statistics to p-values and then 
analyzing p-values using the CB model (6). However, the case study will 
provide an important caveat, namely that a naïve analysis of p-values 
may lead to an inappropriate declaration of systematic differential 
expression. Thus, care must be exercised in any decision to transform 
chi-square statistics to p-values. 
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for the genes eliminated in steps 1 and 2, and for the genes remaining 
after each step. Superimposed against each histogram are the fitted CCS 
model from (1), for which parameter estimates are displayed in table 
1, and the null model χ2

2(0). In all six panels of figure 2, though most 
noticeably in the last panel, the fitted model yields a smaller density 
between 0 and 2, but a larger density between 5 and 10 compared to the 
null model. Overall, each fitted model is in much better concordance 
with its respective histogram than the null model, although even the 
fitted model overstates the number of very small chi-square statistics. 

Correspondingly, our procedure for testing the omnibus null 
hypothesis in (2) yields a p-value less than 0.0001 for the omnibus null 
hypothesis, regardless of whether one defines this p-value by taking 
δ=1/2, ε=2α (i.e. p-value is half the smallest ε, at which the omnibus null 
hypothesis is rejected when δ is fixed at 1/2), or δ=ε=α1/2 (i.e. p-value 
is the square of the smallest ε, at which the omnibus null hypothesis is 
rejected when δ and ε are constrained to equality) or δ=2α, ε=1/2 (i.e. 
p-value is half the smallest δ, at which the omnibus null hypothesis is 
rejected when ε is fixed at 1/2). 

Although a likelihood-based approach to estimating λ and μ could be 
employed, this is not called for because the omnibus null hypothesis 
is not rejected at any α ≤ 0.25, regardless of whether one takes δ=1/2, 
ε=2α or δ=ε=α1/2, or δ=2α, ε=1/2. In fact, the null model is not a bad fit 
to the histogram, except for overstating the number of very small chi-
square statistics. (Recall that the fitted CCS models in figure 2 had the 
same difficulty.)

The bottom panel of figure 3 shows a histogram of the p-values for 
these same 1483 genes, along with the fitted CB model (6), and the null 
model of a uniform distribution. The fitted CB model is not suggestive 
of differential expression, as there is no marked surplus of small 
p-values. However, there are noticeably fewer extremely large p-values 
than would be compatible with a uniform distribution, and for this 
reason, both the MLR test and D test decisively reject the omnibus null 
hypothesis of a uniform distribution. This rejection is inappropriate in 
so far as one uses it to infer differential expression. 

In summary, employing the CCS model to analyze chi-square 
statistics, instead of the CB model to assess p-values resolves the 
aforementioned concern, because the omnibus null hypothesis from (2) 
is not rejected for the genes eliminated in step 3. Thus, using the CCS 
model avoided an inappropriate declaration of differential expression. 

Discussion
We have developed a convenient procedure for testing the omnibus 

null hypothesis of no contamination of a central chi-square distribution 
by a non-central chi-square distribution. This procedure is based on the 
first two sample moments, which permits critical values to be derived 
from quantiles of the standard normal distribution. Our simulation 
studies show that, even for small sample sizes, there is excellent 
agreement between the nominal and actual significance levels. In sharp 
contrast with likelihood ratio tests for mixture models, the asymptotic 
null distribution is uncomplicated [24-27], and thus there is no need for 
re-sampling [28], or random field theory [29], to obtain critical values. 

As a follow-up to rejection of the omnibus null hypothesis, we have 
also proposed moment-based estimators of the contamination fraction 
and non-centrality parameter of the contaminating distribution. 
Provided that the quantities in question are both nonzero, our 
estimators are n1/2-consistent. Moreover, with suitable choices of δ and 
ε in the testing procedure, our estimators have probability 1 of being 
positive, conditional on rejection of the omnibus null hypothesis. This 
result is remarkable because moment-based estimators in mixture 
models ordinarily do not belong to their respective parameter spaces 
with probability 1, as noted by Charnigo et al. [36] for another type of 
contamination model. 

Our testing and estimation procedures are primarily motivated by 
the modeling of numerous chi-square statistics arising from microarray 
data analysis specifically or large-scale testing generally. Such modeling 
expedites a filtration process, which, if successful, can reduce type II 
errors by justifying lighter controls for type I errors. While this filtration 
process was advocated by Dai and Charnigo [10] for the analysis of 
p-values, our case study provides a clear caveat against naïve analyses 
of p-values, and illustrates a real-world scenario in which analyzing 
chi-square statistics avoids an inappropriate declaration of differential 
expression. Moreover, our simulation studies show that under certain 
conditions, analysis of chi-square statistics may actually yield better 
power to detect differential expression than analysis of p-values.

While we have envisaged applying the CCS model to chi-square 
statistics monotonically related to F statistics from one-way ANOVA, 
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Figure 3: The top panel shows a histogram of chi-square statistics for the 
1483 genes eliminated in step 3 of the filtration process employed by Blalock 
et al. [38], along with the null model χ2

2(0). No fitted CCS model is shown, as 
the omnibus null hypothesis is not rejected at any α ≤ 0.25. The bottom panel 
shows a histogram of the p-values for these same 1483 genes, along with the 
fitted CB model, and the null model of a uniform distribution.

The top panel of figure 3 shows a histogram of chi-square statistics 
for the 1483 genes eliminated in step 3, along with the null model χ2

2(0). 
No fitted CCS model is shown because we have W<0. This precludes 
valid moment-based estimation of λ and μ. Although a likelihood-

Genes Estimated λ Estimated μ
all 8799 0.231 3.25
remaining after step 1 0.236 4.13
eliminated in step 1 0.389 1.28
remaining after step 2 0.223 4.54
eliminated in step 2 0.314 2.77
remaining after step 3 0.308 5.19

Note: Shown are parameter estimates for the CCS model as applied to 8799 genes 
in the Case Study, along with subsets of genes retained or eliminated in the filtra-
tion process employed by Blalock et al. [38]. Each of these fitted CCS models is 
displayed graphically in figure 2. 

Table 1: Parameter Estimates for the CCS Model.
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≤ tol, where tol is a specified tolerance. One may interpret tol as the 
maximum acceptable Levy distance between the cumulative distribution 
functions of log[(K-1)F] and log[Y1]. As such, we recommend setting 
tol no larger than 0.20, and preferably as small as 0.10. Corresponding 
to these choices, one has g1+g2+…+gK-K ≥ 83 and g1+g2+…+gK-K ≥ 
543, respectively. Since g1+g2+…+gK-K=27 in the case study we did not 
use rescaling but instead relied on a more sophisticated approach for 
transforming F statistics into chi-square statistics.

1. Titterington DM, Makov UE, Smith AF (1986) Statistical analysis of finite 
mixture distributions. Wiley, John & Sons.

For example, if the normality and equal variance assumptions 
underlying one-way ANOVA are untenable, then one may employ 
the nonparametric Kruskal-Wallis test for equal medians. Since the 
Kruskal-Wallis test statistic is distributed approximately χ2

K-1(0) when 
the medians are equal, the CCS model can be applied in conjunction 
with chi-square statistics from Kruskal-Wallis tests, as easily as with F 
statistics from one-way ANOVA. 

Moreover, sophisticated experimental designs or sampling schemes 
may preclude using either one-way ANOVA or Kruskal-Wallis tests. 
For instance, Mao et al. [40] obtained multiple tissue samples from 
some of their subjects, so that linear mixed models were required to test 
genewise null hypotheses. However, as long as genewise null hypotheses 
are tested using chi-square or F statistics (or even Z or T statistics, since 
these can be squared), the CCS model remains applicable. 

A number of promising avenues exist for future research. One of 
them is to investigate whether the EM test [32,33], can be profitably 
employed in the setting of the CCS model, and if so, whether power 
to reject a false omnibus null hypothesis is improved. Our simulation 
studies suggest that there may indeed be room for improvement, as the 
procedure proposed herein was not uniformly more powerful than the 
MLR test applied to p-values derived from the chi-square statistics.

Another topic for future research is to generalize the CCS model to 
provide greater flexibility for describing real data. For instance, suppose 
that each Xi has its own non-centrality parameter μi under the genewise 
alternative hypothesis. Then we may consider a new model,

(1-λ) χ2
ν(0)+λ∫χ2

ν(μ) dG(μ),                 (7)

where ∫ denotes integration and G is some cumulative distribution 
function defined on the nonnegative real numbers. Note that the first 
sample moment of data from (7) is ν, if and only if (3) reduces to χ2

ν(0), 
as both are equivalent to λ{1-G(0)}=0. Thus, one obtains a consistent 
level α test for whether (7) reduces to χ2

ν(0), by asking whether the first 
sample moment exceeds n-1 qνn,1-α. However, the subsequent estimation 
of λ and G are anticipated to be considerably more delicate.
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