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Introduction

Traditional contrast analysis tackles the question of whether a 
linear combination of group means is exactly zero using significance 
testing. However, in reality, the key question of interest is usually 
how far a linear combination of values in multiple groups involved 
in a comparison is away from zero in a distribution level. Therefore, 
to effectively compare groups, we need additional analysis to 
incorporate information in a distribution level. In addition, the value 
of a traditional contrast has issues in capturing data variability. 
The p-value from classical t-test of testing a traditional contrast 
can capture data variability; however, it is affected by both sample 
size and the strength of a comparison. This issues with significance 
testing of mean difference are reflected in Tukey’s comments [33] “It 
is foolish to ask ‘Are the effects of A and B different?’ They are always 
different --- for some decimal place.” All the problems in traditional 
contrast analysis attribute to the calls for a critical re examination 
of the common use of p-value and significance testing in medical 
research [9,15,16,23,30,36].

To address the issues of traditional contrast analysis, various 
effect sizes have been proposed [8,13,20,34]. Many of them may 
fall into two categories: probabilistic indices for comparing groups 
in a distribution level [1,4,6,12,14,19,21,25,28,31] and metrics for 
capturing both mean and variability, which includes various effect 
sizes similar to standardized mean differences [4,7,10,14,21,25,2
6,28,29,31,32,35,36]. However, different effect size measures are 
suitable for different types of data, and the interpretations of effect 
sizes are generally arbitrary and remain problematic [13,24,26]. 
Therefore, clear and consistent interpretations for the strength of 
group comparison are important.  

In this article, I explore how to use recently proposed concept 
of contrast variable [39,40] to integrate the two categories of effect 
sizes. Meanwhile, based on the concepts of contrast variable and 
standardized mean of contrast variable (SMCV), I explore a rule for 
classifying the strength of comparison. The thresholds in this rule 
have meanings from both strength and probability perspectives; 

hence this rule may provide a clear and consistent interpretation to 
the strength of group comparisons. The concept of contrast variable 
can be applied not only to measure the strength of any contrast 
including difference between two groups in general but also to assess 
the size of main effects, interaction effects and any other contrasts 
(such as linear or quadratic effects) in Analysis of Variance (ANOVA). 
Hence, the use of contrast variable and associated classifying rule may 
have the potential to establish a consistent standard for assessing the 
strength of comparisons and the size of various effects in ANOVA.

Contrast variable, SMCV and c+ -probability

Contrast analysis is a widely used statistical method to compare 
the values in multiple groups or treatment levels. Traditionally, a 
contrast is defined as a linear combination of means in the groups 
or treatment levels where the coefficients sum to zero. Traditional 
contrast analysis focuses on testing whether an average effect is 
exactly zero, above zero, or below zero. However, in many cases, 
scientists are interested in knowing the magnitude of effect beyond 
the question of average effect being exactly zero and the direction of 
a contrast. As a potential solution to these issues, contrast variable, 
SMCV and c+-probability have been proposed for addressing the 
strength of a comparison [39,40].

Briefly, a contrast variable is defined as a linear combination of 
random variables representing the values in the groups (or treatment 
levels) themselves, not just a linear combination of their means, 
where the coefficients sum to zero. The mean of a contrast variable 
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equals a traditional contrast. SMCV is the ratio of mean and standard 
deviation of a contrast variable representing a comparison or 
relationship of interest. Consequently, an effect size (i.e., SMCV) and 
a traditional contrast (i.e., contrast mean) are now two characteristics 
of the same random variable; thus a contrast variable integrates 
both an effect size and a traditional contrast. c+ -probability is the 
probability that a contrast variable obtains a positive value. In other 
words, when one draws one value from each group involved in a 
comparison and calculate a linear combination of these drawn values 
based on the contrast’s coefficients, c+-probability is the proportion 
that the calculated value is greater than zero when the drawing 
process is repeated infinite times. c+ -probability is a probabilistic 
index accounting for distributions of compared groups whereas 
SMCV is an extended variant of standardized mean difference (such 
as Cohen’s d, Glass’s ∆̂  and Hedge’s g) incorporating both mean and 
variance of groups. There is a link between SMCV and c+ -probability 
[39]. Thus, standardized mean difference and probabilistic index are 
now integrated to effectively assess the strength of a comparison. In 
addition, the concepts of SMCV and c+ -probability are applicable to 
not only the comparison of two groups but also the comparison of 
more than two groups.

The concepts in contrast analysis can be formalized mathematically 
as follows. Suppose the random values in t groups represented by 
random variables G1, G2,...,Gt have means µ1, µ2, …, µt and variances 
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The c+-probability for a contrast variable V is the probability that 
the contrast variable btains a positive value, i.e., Pr (V > 0). There is 
a strong relationship between c+-probability and SMCV of a contrast 
variable V as follows [39]:

1). for any distribution of V, c+ - probability = 1− F (− λ), where F 
(⋅) is the cumulative distribution function of the standardized contrast 
variable

V

V

VW µ
σ
−

= ;

2). if V has a normal distribution, c+- probability = Φ(λ), where 

A: SMCV-based Criterion

Effect Type SMCV
(or SSMD)

c+-probability
(or d+-probability) Cohen's d

Extra large positive effect [1.645,+∞] [0.95, 1] [2.324, + ∞]
Large positive effect [1, 1.645) [0.84, 0.95) [1.414, 2.326)
Medium large positive effect [0.5, 1) [0.7, 0.84) [0.707, 1.414]
Medium positive effect (0.25, 0.5) (0.60, 0.7) (0.354, 0.707)
Small positive effect (0, 0.25] (0.50, 0.60] (0, 0.354]
No effect 0 0.50 0
Small negative effect [-0.25, 0) [0.40, 0.50) [-0.354, 0)
Medium negative effect (-0.5, -0.25) (0.3, 0.40) (-0.707, -0.354)
Medium large negative effect (-1, -0.5] (0.16, 0.3] (-1.414, -0.707]
Large negative effect (-1.645, -1] (0.05, 0.16] (-2.326, -1.414]
Extra large negative effect [−∞,−1.645] [0, 0.05] [−∞ , -2.326]

B: Cohen's Criterion
Effect Type SSMD d+-probability or CL Cohen's d
Large positive effect 0.5657 0.7142 0.8
Medium positive effect 0.3536 0.6382 0.5
Small positive effect 0.1414 0.5562 0.2
Small negative effect -0.1414 0.4438 -0.2
Medium negative effect -0.3536 0.3618 -0.5
Large negative effect -0.5657 0.2858 -0.8

C: Mclean's Criterion
Effect Type SSMD d+-probability or CL Cohen's d
Large positive effect (0.707, + ∞] (0.76, 1] (1, + ∞]
Moderate positive effect (0.354, 0.707] (0.64, 0.76] (0.5, 1]
Small positive effect (0, 0.354] (0.5, 0.64] (0, 0.5]
No effect 0 0.5 0
Small negative effect [-0.3536, 0) [0.36, 0.5) [-0.5, 0)
Moderate negative effect [-0.707, -0.354) [0.24, 0.36) [-1, -0.5)
Large negative effect [−∞ , -0.707) [0, 0.24) [−∞ , -1)
Note: CL denotes the common language effect size indicator in the 2-group case proposed by [21].

Table 1: Effect size criteria for classifying the strength of a contrast.
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Φ (⋅) is the cumulative distribution function of the standard normal 
distribution;

3). if V has a unimodal distribution with finite variance 2 0Vσ > ,
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4). if V has a symmetric unimodal distribution with finite variance 
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A classifying rule for interpreting the strength of comparisons

Clear and consistent interpretations for the strength of group 
comparison are important and in urgent needs, which is reflected in 
Rosenthal, Rosnow and Rubin [26]’s comment, “Despite the growing 
awareness of the importance of estimating sizes of effects along with 
obtaining levels of significance, problems of interpretation remain.” 
as well as in [13]’s comments, “The interpretation of the index value 
magnitude is, perhaps, the biggest limitation of the use of effect size.” 
Based on contrast variable, SMCV and c+-probability, we can provide 
a clear and consistent interpretation to the strength of a comparison.

With contrast variable, we can assess the strength of a contrast 
from two aspects: one is based on the integration of both mean and 
variability of a contrast, represented by SMCV and the other is based 
on distributions in multiple conditions, represented by c+-probability. 
Moreover, because of the relationship between SMCV and c+-
probability, we can classify the strength of contrast based on SMCV 
which simultaneously contains information from c+- probability. 
Based on SMCV, some key values of interest are 0.25, 0.5 and 1, 
which means that the average value of a contrast is one quarter, one 
half and one time of the standard deviation of the contrast variable. 
If one treats the mean of a variable as signal and standard deviation 
of a variable as noise, then the SMCV values of 0.25, 0.5 and 1 for a 
contrast variable means that the signal-to-noise ratio for the contrast 
variable representing a comparison is 25 percent, 50 percent and 
100 percent respectively. Under normality, SMCV = 0.25, 0.5 and 
1 indicates c+- probability = 0.60, 0.7 and 0.84 respectively. If 
based on c+-probability alone, one key value of interest for SMCV is 
1.645. This is because SMCV = 1.645 corresponds to c+-probability 
= 0.95 under normality. In addition, 1.645 equals approximately

8
3

, an important value in the relationship between SMCV and c+-

probability for non-normal distributions. SMCV = 1.645 indicate that 

the corresponding c+-probability is at l east 0.918 when the contrast 
variable has a symmetric unimodal distribution, and is at least 0.836 
when the contrast variable has a unimodal distribution. Therefore, 
based on both SMCV and c+-probability, some key values of interest 
for SMCV are 0, 0.25, 0.5, 1 and 1.645.

Based on the key values of SMCV and their corresponding values 
of c+-probabilities, it is reasonable to construct SMCV-based criteria 
for assessing the strength of a comparison. For example, when the 
mean of a contrast variable is zero (i.e., SMCV=0), c+-probability is 
0.5. When SMCV is between 0 and 0.25, the signal-to-noise ratio is 
between 0 and 25 percent and the c+-probability is between 0.50 
and 0.60, which is slightly above 0.50; thus the strength of the 
comparison (or effect size) is small. When SMCV is between 0.25 and 
1, the signal-tonoise ratio is between 25 percent and 100 percent 
and the c+-probability is between 0.60 and 0.84; thus the strength 
of the comparison is medium. When SMCV is between 1 and 1.645, 
the signal-to-noise ratio is between 100 percent and 164.5 percent 
and the c+-probability is between 0.84 and 0.95; thus the strength of 
the comparison is large. Finally, when SMCV is greater than or equal 
to 1.645, the signal-to-noise ratio is at least 164.5 percent and the 
c+- probability is at least 0.95; thus the strength of comparison is 
extra large. This is for the positive direction. Similarly, we can classify 
the strength of comparison in the negative direction. The resulting 
SMCV-based classifying rule is shown in Panel A of Table 1.

The criteria in Panel A of Table 1 can be applied to any combination 
of random variables in which the interest is how far the combination 
is away from zero although here we focus on the linear combination 
of random variables. The concepts of SMCV and c+- probability 
accommodate various situations with or without independence 
and with or without variance homogeneity. Thus, if one uses SMCV 
only, one can use the criterion in the second column of Panel A in 
Table 1. This criterion should be applicable in a group comparison 
context with or without independence and with or without variance 
homogeneity and is consistent in various experiments in terms of 
signal-to-noise ratio. On the other hand, if one prefers to use c+-
probability, one can use the criterion in the third column of Panel 
A in Table 1. Regardless of data distributions, this c+-probability-
based criterion is consistent in various experiments in terms of the 
probability of a contrast variable being greater than zero. However, 
The correspondence between SMCV-based and c+-probability-
based criteria listed in Table 1 relies on the normality assumption. 
Consequently, if one uses the c+-probability-based criterion in Table 
1, corresponding values of SMCV may be adjusted according to the 
underlying nonnormal distributions. Similarly, if one uses the SMCV-
based criterion in Table 1, corresponding values of c+-probability may 
be adjusted according to the underlying nonnormal distributions.

Two-group comparisons

For two-group comparisons, the difference of values between 
two groups is a contrast variable with coefficients (1, -1). Thus, SMCV 
becomes strictly standardized mean difference (SSMD), i.e., the ratio 
of mean to standard deviation of a difference, and c+-probability 
becomes d+-probability, i.e., the probability that a difference is 
positive [35-37,41]. The d+- probability is equivalent to the well-
known common language effect size indicator (CL) in the 2-group 
case [21] or P(X >Y) [1, 28, 42]. By replacing SMCV and c+-probability 
with SSMD and d+-probability, we can obtain the relationships 
between SSMD and d+-probability described in [38].

Huberty [13] pointed out, it appears that the only cutoffs of 
effect size to which applied researchers have paid attention are those 
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standards initiated by Cohen [5]: Cohen’s d being 0.20 for small effects, 
0.50 for medium effects, and 0.80 for large effects. Later, McLean 
[22] suggested the following criteria: Cohen’s d being 0.50 for small
effects, between 0.50 and .00 for moderate effects, and above 1.00 for
large effects. The original and probability meanings of SSMD can give
clear interpretations to Cohen’s criterion. The relationship between
ohen’s d and SSMD is Cohen’s d = 2 SSMD [41]. Based on this
relationship and d+- probability=Φ (SSMD) under normality, Cohen’s
d = 0.20, 0.50, 0.80 correspond to SSMD = 0.1414, 0.3536, 0.5656
and d+- probability=0.556, 0.638, 0.714 (Panel B of Table 1). Hence
Cohen’s small, medium and large effects have a signal-to-noise ratio
of 14.14, 35.36 and 56.56 percent respectively and a d+-probability of
0.556, 0.638 and 0.714 respectively under normality. In other words,
if one randomly draws one value from each of two groups, Cohen’s
small, medium and large effects means that the chance of the value
from the first group is greater than the second group is 0.556, 0.638
and 0.714 respectively in the positive direction. Cohen’s d being
[0, 0.50), [0.50, 1.00) and [1.00, ∞] correspond to SSMD being [0,
0.3536), [0.3536, 0.7071), [0.7071, ∞ ) respectively and d+-probability 
being [0.50, 0.64), [0.64, 0.76), [0.76, 1] respectively (Panel C of Table 
1). That is, Mclean’s small, moderate and large effects have a signal-
to-noise ratio between 0 and 35.36 percent, between 35.36 and 
70.71 percent, and greater than 70.71 percent respectively. Based on 
the d+-probability, if one randomly draws one value from each of two 
groups, Mclean’s small, moderate and large effects means that the 
chance of the value from the first group is greater than the second 
group is between 0.5 and 0.64, between 0.64 and 0.76, and greater 
than 0.714 respectively in the positive direction. Therefore, SSMD 
criterion gives interpretations to Cohen’s and Mclean’s criteria from 
both strength and probability perspectives. From Table 1, we can see 
that the small, medium and large effects based on Cohen’s criterion 
are respectively small, medium and medium large effects based on 
SSMD. Mclean’s small and medium effects are roughly SSMD’s small 
and medium effects respectively. Mclean’s large effects contain 
SSMD’s medium large, large and extra large effects.

Contrast analysis in one-way ANOVA

Concepts: The contrast analysis in one-factor experiments aims 
at the comparison of multiple levels in one factor. Consider one-way 
ANOVA, in which t groups (or treatment levels) are used in ontrast 
analysis, and the random variable representing the ithgroup Gi 
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This non-central t-distribution can be used to construct the CI of 
SMCV [39, 40].

The above method of contrast variable and SMCV can be applied 
to any contrast in one-way ANOVA although different contrasts may 
have different coefficients. After constructing contrast variable, we 
can apply the same classifying rule in Table 1 to assess the strength 
of any contrast. For example, the effect in the ith group is commonly 
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Figure 1: Simulated data in four Scenarios A, B, C and D with different MSE and 
number of replicates (n) in each age group. All four scenarios have the same 
sets of sample means (25, 30, 40, 50, 55) for ages (11, 12, 13, 14, 15). The 
means are indicated by “+” and are connected using linear segments in each 
panel. The linear relationship between putative performance score and age is 
investigated using a contrast and its effect sizes.

Treatment SMCV and 95% CI c+-
probability SES and 95%CI α̂  and 95% CI

p-value
for αi

Age 11 -0.42 (-1.05, 0.21) 0.34 -0.38 (-0.94, 0.19) -15 (-37.6, 7.6) 0.188
Age 12 -0.28 (-0.90, 0.34) 0.39 -0.25 (-0.81, 0.31) -10 (-32.6, 12.6) 0.378
Age 13 0 (-0.62, 0.62) 0.5 0.00 (-0.56, 0.56) 0 (-22.6, 22.6) 1
Age 14 0.28 (-0.34, 0.90) 0.61 0.25 (-0.31, 0.81) 10 (-12.6, 32.6) 0.378
Age 15 0.42 (-0.21, 1.05) 0.66 0.38 (-0.19, 0.94) 15 ( -7.6, 37.6) 0.188

Table 2: The estimates and 95% confidence intervals (CI) of standardized mean 
of contrast variable (SMCV), standardized effect size (SES) and effect (i.e., αi ) at 
each age level in the Rosenthal, Rosnow and Rubin’s example about psychomotor 
skills.
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SES from homoscedasticity to heteroscedasticity.

Rosenthal, Rosnow and Rubin [24] proposed four effect size 
correlations alertingr , contrastr , effectsizer  and BESDr  to measure the 
magnitude of experimental effects. The definition of these four effect 
size correlations are as follows.

=
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. See 

Rosenthal, Rosnow and Rubin [24] for more details about these four 
effect size correlations.

A case study and simulation

An example: A study was conducted to investigate psychomotor 
skills against ages [26]. In this study, the sample means of performance 
scores of ten children at each of five age levels (11, 12, 13, 14, 15) 
were 25, 30, 40, 50 and 55 respectively, and the MSE was 1575. The 

contrast for level effect at age 11 has coefficients 4 1 1 1 1,- ,- ,- ,-
5 5 5 5 5

 
 
 

. The value of SMCV for this contrast is estimated to be -0.42 and 
corresponding c+-probability is 0.34, which suggests that the effect 
at the level of age 11 is medium and negative. The c+-probability of 
11 0.34 indicates that, if one value is drawn from each age group, 
the chance that the value at age 11 is larger than the average value 
of the 5 draws at the remaining ages is 34%. Using the noncentral 
t-distribution described above, the 95% confidence interval (CI) of
SMCV of this contrast is (-1.049, 0.209). Similarly we can investigate
the effect at other age levels. We also calculated SES and its 95% CI.
The results are displayed in Table 2. In this example, the values of SES
are all very close to their corresponding SMCV values. This is because
the square root of the sum of squared coefficients for each treatment
level is close to 1 in this example.

A simulation study: to see how strong the linear relationship 
between performance score and age is, four scenarios A, B, C and D 
were simulated using normal distributions and transformation based 
on the psychomotor example (Figure 1). The age groups have the 
same sample means (25, 30, 40, 50, 55) in each scenario whereas 
the MSE and sample size vary (the first row of Table 3). Although all 
four scenarios have the same set of group means, the simulated data 
displayed in Figure 1 clearly show that the linear relationship between 
the putative performance score and age is not large in Scenarios 
A and B but extra large in Scenarios C and D. This is because the 
simulated studies have large data variability (i.e., data variance being 
1575) in Scenarios A and B but much smaller data variability (i.e., data 
variance being 16) in Scenarios C and D. 

The contrast variable representing a linear relationship between 
performance score and age has coefficients (-2, -1, 0, 1, 2). For this 
linear relationship, in each scenario, we calculated contrast mean (i.e., 
tradition contrast L), SES, SMCV and their 95% confidence intervals as 
well as γalerting , γcontrast , γeffectsize and γBESD that are proposed by Rosenthal,
Rosnow and Rubin [26]. The SMCV 

L̂inearλ of this contrast variable is 
estimated to be 0.6375 in scenarios A and B, which indicates that 
the contrast for the linear relationship has a medium large positive 
effect; in other words, the study shows that the performance score 

Table 3: Contrast mean (i.e., traditional contrast L), SMCV, SES and their 
confidence intervals (CI), correlational effect sizes for the contrast variable 
representing a linear relationship between performance score and age as well as 
average magnitude of effects at treatment levels in a simulation.

Scenario A:
MSE=1575, 
n=10

Scenario B:
MSE=1575, 
n=200

Scenario C:
MSE=16, 
n=10

Scenario D:
MSE=16, 
n=200

Contrast
Mean L

p-value 0.0498 0 0 0
Estimate 80 80 80 80
95% CI (0.067, 159.93) (62.59, 97.41) (71.94, 88.06) (78.24, 81.76)

ralerting 0.9923 0.9923 0.9923 0.9923
rcontrast 0.2878 0.2748 0.9481 0.9431
reffectsize 0.2876 0.2746 0.9415 0.9366
rBESD 0.2794 0.2744 0.8944 0.4017

SES
Estimate 2.0158 2.0158 20 20
95% CI (0.0011, 4.009) (1.568, 2.463) (15.42, 24.54) (19.01, 20.98)

SMCV

Estimate 0.6375 0.6375 6.325 6.325
95% CI (0.0004, 1.268) (0.496, 0.779) (4.875, 7.760) (6.012, 6.634)
c+-
probability 0.738 0.738 ~1 ~1

Effect type Medium large Medium large Extra large Extra large
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has a medium large positive linear relationship with age. The 95% 
confidence interval of SMCV of this contrast is (0.0004, 1.268). The 
estimate of SES and its 95% CI for the linear relationship are 2.0158 
and (0.0011, 4.009) respectively (Panel A of Table 3).

The traditional contrast L has the same value of 80 in all 
four scenarios; thus it cannot indicate the strength of the linear 
relationship. The 95% confidence interval of L becomes narrower 
each step from Scenarios A to D, but can hardly represent the 
strength of the linear relationship. If using p-value of testing L=0, 
we would conclude marginally significance in Scenario A and strong 
significance in the remaining three scenarios, which hardly offers 
useful information about the strength of the linear relationship 
in the data. Therefore, traditional contrast cannot provide useful 
information about the strength of the linear relationship. The results 
in Table 3 also show that (1) using γalerting, the linear relationship is
the same for all four scenarios; (2) using γBESD, the linear relationship
is weak in Scenarios A and B, strong in Scenario C, and in between in 
Scenario D; (3) using γcontrast or γeffectsize , the linear relationship is weak
in Scenarios A and B but very strong in Scenarios C and D; (4) using 
SMCV, the linear relationship is medium large in Scenarios A and B 
but extra large in Scenarios C and D. The results obtained using γalerting

and γBESD do not match with the observation and intuition about the
strength of linear relationship displayed in Figure 1. SMCV, γcontrast and 
γeffectsize give similar sensible judgment about the strength of the linear
relationship.

The SES values in Scenarios A and B (both being 2.0158) is much 
smaller than those in Scenarios C and D (both being 20). Thus SES 
represents the relative strength of the linear relationship effectively. 
However, the values of SES are affected by the coefficients of 
contrasts; thus they are not comparable for contrasts with different 
coefficients. Consequently, there are not any consistent SES-based 
criteria for classifying the strength of contrasts with different 
coefficients. The SMCV values in Scenarios A and B (both being 
0.6375) is smaller than those in Scenarios C and D (both being 
6.325). The confidence intervals of SMCV in the scenarios with 10 
per group are much wider than those in the corresponding scenarios 
with 200 per group. Thus, like SES, the sample size has the right 
impact on SMCV estimation: it affects the precision but not mean 
of SMCV estimation. Unlike SES, the value of SMCV is comparable 
to various contrast variables with different coefficients and has the 
same probabilistic meanings. Moreover, the values of corresponding 
c+- probability provide additional information about the linear 
relationship: if one draws five values (y1, y2, y3, y4, y5) each from 
one of the five age groups, the probability that a contrast variable 
representing the linear relationship (i.e., -2y1 –y2 +y4 +2y5 ) is greater 
than 0 (i.e., no positive linear relationship) is 0.738 in Scenarios A and 
B and nearly 1 in Scenarios C and D.

Contrast analysis in multi-factor experiments

Concepts: In multifactor experiments with multiple levels in each 
factor, we use a random variable Pk  to represent the random values 
in the lth ( l =1,...nl) level of the kth (k = 1 ,..., K ) factor. Suppose 
a set of coefficients represent a comparison for the levels in the 
kth factor. A contrast variable based on this set of coefficients is 
defined as 

1

ln

l l
l

V c G
=

= ∑ where Gl 
is a random variable whose mean (and

variance) equals the weighted mixture of means (and variances) of m 
combinations of factor levels containing the lth level of the kth factor. 

Consider a two-factor experiment in which the two factors have I 
and J levels respectively as shown in Table 4. Let us use a random Pij 

variable to represent the random values in the combination of the ith 
level of factor 1 and the jth level of factor 2. Assume Pij has mean µij 
and variance 2

ijσ  . A contrast variable for a comparison in the levels 
of Factor 1 is 

1

I

i i
i

V c P• •
=

= ∑  Where 
1

0
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i
i

c •
=

=∑ (4)

Pi• is a random variable defined as ( )
1 1

J J

i ij ij ij ij ij
J J

P w P wµ µ•
= =

= − +∑ ∑
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1

J
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J
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∑ = 1

for each i. Thus, its mean (and variance) equals the weighted mixture 
of means (and variances) of m combinations of levels in factors 

containing the ith level of factor 1, i.e., 
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The corresponding c+-probability is the probability that the 
contrast variable V based on Pi•′ 

s is greater than 0.

In situations where we are interested in mixture of m levels (m ≤ 

J) of factor 2 with equal weights (i.e., for each 
1

,i w
m

=  if the jth level 

is of interest and wij 
= 0 otherwise), if Pi•′s are independent,

1 1 1 1

2 2 2

1 1 1 1

( ) ( ) 1
. .
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As shown in Formula 4, the definition of a contrast variable for a 
comparison in levels of a factor is based on multiple random variables 
Pi•′s which contain unknown parameter µij. Thus, it is not easy to
directly use Formula 4 to derive SMCV. In reality, we can use the 
standardized mean of a linear combination of Pi•′s to calculate SMCV.
Corresponding to the SMCV in Formula 6, we can construct a linear 
combination of Pi•′s as follows:

1 1 1 1

J JI I

i ij ij ij ij
i J i J

U c w P c P•
= = = =

= =∑ ∑ ∑ ∑ where c .ij i ijc w•=     (7)

The standardized mean of the linear combination U is

1 1

2

1 1

( )
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JI

i ij ij
i J

U JI

i ij ij
i J

c w

c w

µ
λ

σ

•
= =

•
= =
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∑ ∑
 (8)

Therefore, 
1

. .V U
m

λ λ=  (9)

Because U directly consists of factor levels and is easier to handle 
than contrast variable V, we can work on U to get statistical inference 
on parameters from V, based on formulas 7 – 9. For convenience, we 
use a term “contrast core” to refer to the comparison (represented by 
ci•′S) embraced in a linear combination U. Meanwhile, we use another
term “core number” to refer to the number of combinations with 
equal weights (i.e., m) [40].

In a two-way ANOVA, we usually assume Pi•′S that are independent

with equal variance 2

eσ . In situations where we are interested in 
mixture of m levels ( m ≤ J ) of factor 2 with equal weights (i.e., wij
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= 
1
m

  if the jth  level is of interest and wij 
= 0 otherwise), we have

1 1 1 1

2 2 2

1 1 1

( ) ( ) 1
.

. ( )

J JI I

i ij ij i ij ij
i J i JV

V I JI
V

e i i ij e
i i J

c w c w

mc c w

µ µµλ
σ σ σ

• •
= = = =

• •
= = =

∑ ∑ ∑ ∑
= = =

∑ ∑ ∑
 (10)

Based on the method of contrast variable and SMCV presented 
above, we can apply the same classifying rule in Table 1 to assess the 
strength of any contrasts in two-way ANOVA including main effect 
and interaction effect although different contrasts may have different 
coefficients. The treatment effect, main effect and interaction effect 
can be explored using traditional contrasts [2]. Now, each of them 
can be expressed as the mean of a contrast variable or a linear 
combination of random variables 

1 1

JI
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= =
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ckl′S are different for different effects. For treatment effect τij=µij − µ••
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For main effect τi• = µi• − µ•• in the ith
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number is J and the coefficients are
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For main effect τ•j = µ•j − µ•• in the  jth level of factor 2, the core
number is I and the coefficients are
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  (14)          

Using contrast variable, SMCV and the coefficients in (11)–(14), 
we can use the classifying rule in Table 1 to provide a consistent 
interpretation to any effects that are commonly used in two-way 
ANOVA. And the same method can readily be extended to ANOVA 
with more than two factors.

Estimation and Inference of SMCV

A traditional contrast is defined as 
1 1

 = 
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Then the estimate of traditional contrast L is 
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Considering 2 2/ ~ ( ),e e ev MSE vσ χ and 'ijY • s  and 2S 'ij s are all 
independent, we have
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Let ( , ) ( )t V bF λ ⋅  be the cumulative distribution function of noncentral 

τ(V,bλ)  and Tobs  be the observed value of T. Then we can find λL and
λU such that ( , )Lt V bF λ ( Tobs) = 1

2
α

−  and ( , )Ut V bF λ ( Tobs) = 
2
α

subsequently 

(λL, λU) is a 1− α confidence interval of SMCV λ.

The estimates of SMCV λ and its distribution can be derived as 
follows. Based on the above three properties for the independent, 
homoscedastic and normal model in two-way ANOVA,
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where 
11 12, ,..., 2IJn n n ≥ . In deriving the above equations, I used 
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The MM and MLE estimates of SMCV are
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Considering ˆ ˆ,  ,  UMVUE MM MLE

e e
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and T ~ noncentral t(ve, b), we have 

ˆ ˆ~  t( , , ),  ~  t( , , )UMVUE e UMVUE MM e MMpnc v b a pnc v b aλ λ λ λ and  

ˆ ~ pnct( , , ),MLE e MLEv b aλ λ  

where 

1.5
,   ,  and pnc t( , , )e

UMVUE MM MLE

e e e

vK N
a b b a b a b v c a

v v v

−
= ≈ = =

is a proportional noncentral t-distribution with ν degrees of 

freedom, non-central parameter c and proportion a. The proportional 
noncentral t-distribution is defined as follows: if T ~ noncentral t(ν,c) 
then aT ~ pnc t(ν,c, a) [37].

In ANOVA, we usually assume that the values in each combination 
of factor levels independently have a normal distribution with equal 
variance. Consequently, any contrast variable also has a normal 
distribution. Therefore, we can plug the estimate of SMCV into 
the relationship c+ - probability = Φ(λ)to obtain an estimate of 
c+probability for contrast variable V.

An illustrative example

Here I construct an illustrative example based on Johnson et al’s 
safety assessment study [18] to demonstrate how the method works. 
In this example, TUNEL staining fold  increases were measured to 
assess apoptosis in rat myotube cultures treated with two drugs A 
and B respectively at 4, 10 and 16 hours. The data is listed in Table 5 
and displayed in Figure 2.

This is an example of ANOVA with two factors, drug and time. 
The factor drug has two levels, drugs A and B, and the factor time 
has three levels, hours 6, 9 and 12. That is, I=2 and J=3. Let random 
variables P11, P12, P13, P21, P22, P23 

represent the fold increases by drug A 
at hours 4, 10, 16 and by drug B at hours 4, 10, 16, respectively. Then 

the main effect for the drug can be assessed using a contrast variable 

1 1 2

1 1
2 2

V P P• • •= − where P1• and P2• are random variables constructed

as Pi• 
in Table 4. Thus, P1• is a random variable for the drug A whose 

mean (and variance) equals the equally weighted mixture of means 
(and variances) of 3 combinations of levels, i.e., drug A at hours 4, 
10, 16, and P2• is a similar random variable for drug B. The mean 

and SMCV of V1• can be obtained using the linear combination 

1 11 12 13 21 22 23

1 1 1 1 1 1
, , , , ,

6 6 6 6 6 6
U P P P P P P• = + + − − − . For U1•, the coefficient

Figure 2: Displaying data in an illustrative example about TUNEL fold increases 
in rat myotube cultures induced by drugs A and B respectively at hours 4, 10 
and 16. The crosses and dots represent the fold increases for drugs A and B, 
respectively. A “×” sign represent the mean of fold increases in a combination 
of factor levels..
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Note: Pij has mean µij and variance σ µ µ•
= =

− = − +∑ ∑2

1 1
( )

J J

ij i ij ij ij ij ij
j j

P w P w

where 
=

=∑
1

1
J

ij
j

w for each i. µ µ•
= =

= − +∑ ∑
1 1

( ) '
I I

j ij ij ij ij ij
i i

P w P w where 

=
=∑

1
' 1

I

ij
i

w  for each j.

Table 4: Random variables to represent values in each combination of levels in a 
two-factor experiment.

Fold increase Hour 4 Hour 10 Hour 16

Drug A 3.6, 3.1, 4.0, 4.3, 4.9,
3.8, 4.0, 4.7, 4.3, 4.2

5.5, 5.9, 4.7, 6.6, 4.9,
5.6, 6.0, 6.5, 5.7

6.6, 6.8, 6.3, 5.5, 5.9
5.6, 5.9, 5.4, 5.1, 6.1

Drug B 3.5, 2.9, 3.1, 3.6, 2.6,
4.0, 3.6, 3.9, 2.8, 2.7

5.6, 4.6, 5.8, 5.4, 5.2,
6.4, 4.8, 6.1, 5.1, 4.7

6.3, 6.8, 5.6, 6.0, 5.9,
6.9, 5.4, 5.7, 5.5

MSE: 0.316
Means: A.Hour4   A.Hour10   A.Hour16   B.Hour4   B.Hour10   B.Hour16

4.09         5.71            5.92          3.27          5.37            6.01

Table 5: Data in an illustrative safety assessment study for two drugs at three time 
points.
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set is 1 1 1 1 1 1
, , , , ,

6 6 6 6 6 6
 

+ + − − − 
 

, the contrast core is 1 1
,

2 2
 

− 
 

, and the core 

number is 3. Thus, the SMCV of V is estimated to be 0.442 and the 
confidence interval of λ1• can be obtained using

1 1
~ noncentral ( , )

12

1 1

JI
c Yij ij

i J
T t v b

ecJI ij
MSE

niji j

λ

∑ ∑ •
= =

=
•

∑ ∑
= =

where νe =52 and b = 5.3785. Similarly, we applied the method of
contrast variable to investigate other main effects at levels of either 
factor and to explore linear and quadratic relationships. The results 
are listed in Table 6.

The results in Table 6 show that the SMCV of the contrast 
variable for the main effect of Drug A is estimated to be 0.442 and its 
corresponding c+-probability is 0.671. Thus the main effect of Drug 
A is medium; so is the main effect of Drug B. The average magnitude 
of drug effects is 0.442 which is a medium effect. In other words, the 
drug factor has a medium effect or the overall difference between 
Drugs A and B is medium. For each time level, the difference between 
Drugs A and B is large (i.e., SMCV=1.017) at Hour 4, medium (i.e, 
SMCV=0.423) at Hour 10 and small (i.e., SMCV=-0.113) at Hour 
16. The SMCV’s of contrasts for main effects at Hours 4, 10 and 16
are -2.968, 1.028 and 1.940 respectively. The corresponding c+-
probabilities are 0.001, 0.848 and 0.974. These results indicate that
the strength of main effects at Hours 4, 10 and 16 are extra large,
large and extra large respectively (Table 6). The average magnitude of
time effects is 1.979. Thus, the time factor has an extra large effect.

The SMCV is estimated to 2.834 for the contrast variable 
representing the linear relationship between time and fold increase, 
which indicates that this linear relationship is extra large. From the 

coefficients and core numbers, the contrast variable representing 
the linear relationship also denotes the difference of fold increases 
between Hours 16 and 4. The SMCV is estimated to 1.028 for the 
contrast variable representing the quadratic relationship between 
time and fold increase, which indicates that this quadratic relationship 
is large. From the coefficients, the contrast variable representing 
the quadratic relationship also denotes the main effect at Hour 10, 
namely the difference between Hour 10 and the average of Hours 
4 and 16. Judged by observing the data displayed in Figure 2, all 
the above conclusions about the strength of main effects and other 
contrasts obtained using SMCV are reasonable.

If we use the values of contrast means (namely traditional 
contrasts) and associated pvalues, we would conclude that all the 
contrast means listed in Table 7 are significant and we can hardly 
obtain useful information about the strength of comparison. One 
more case is that we know the contrasts with coefficients (-1, 2, -1, 

-1, 2, -1) and 1 1 1 1 1 1
 , , , , ,
6 3 6 6 3 6

 
− − − − 

 
 respectively can both represent 

the quadratic relationship between fold increase and time. However, 
the estimated values of traditional contrast for these two contrasts 
(i.e., Contrasts D and G) are very different, i.e., 0.287 and 0.048, 
respectively, and the SES are also very different, i.e., 5.11 and 0.85 
respectively. By contrast, the values of SMCV are the same (i.e., 1.028) 
for both contrasts (Table 6), which also indicates that the results 
reached using SMCV are reasonable, better than those reached using 
a traditional contrast and SES.

The correlational effect sizes including contrast effect size
 , ,alerting

γ γ γ

and BESD
γ

 [26] were also calculated for each contrast. Like SMCV, 
multiplying a constant to the coefficients will not change the 
values of the correlational effect sizes. For example, for each 
of  contrast effect size

 , ,alerting
γ γ γ

 and BESD
γ  , the value is the same

Effect or Relationship Coefficients of linear combination Core Number SMCV 95% confidence interval of SMCV c+- probability Strength Type

A: Drug A τ1• ( 1
6 , 1

6 , 1
6 ,- 1

6 , - 1
6 ,- 1

6 ) 3 0.442 (0.072, 0.821) 0.671 Medium

B: Drug B τ2• (- 1
6 ,- 1

6 ,- 1
6 , 1

6 , 1
6 , 1

6 ) 3 -0.442 (-0.821, -0.072) 0.329 Medium

Average drug effect magnitude 0.442 Medium

C: Hour 4 τ•1 (
1
3 ,- 1

6 ,- 1
6 ,

1
3 ,- 1

6 ,- 1
6 ) 2 -2.968 (-3.733, -2.279) 0.001 Extra large

D: Hour 10 τ•2 (- 1
6 ,

1
3 ,- 1

6 ,- 1
6 ,

1
3 ,- 1

6 ) 2 1.028 (0.548, 1.529) 0.848 Large

E: Hour 16 τ•3 (- 1
6 ,- 1

6 ,
1
3 ,- 1

6 ,- 1
6 ,

1
3 ) 2 1.940 (1.377, 2.549) 0.974 Extra large

Average time effect magnitude 1.979 Extra large
F: Linear (-1, 0, 1, -1, 0, 1) 2 2.834 (2.162, 3.578) 0.998 Extra large
G: Quadratic (-1, 2, -1, -1, 2, -1) 2 1.028 (0.548, 1.529) 0.848 Large

Table 6: Contrast analysis using contrast variable for an illustrative example about safety assessment of Drugs A and B at hours 4, 10 and 16.

Effect or Relationship L p-value of testing L=0 SES USES ralerting rcontrast reffectsize rBESD

A: Drug A τ1• 0.18 0.019 0.32 0.78 0.173 0.320 0.155 0.047
B: Drug B τ2• -0.18 0.019 -0.32 -0.78 -0.173 0.320 0.155 0.047
Average gender effect magnitude 0.32 0.78
C: Hour 4 τ•1 -1.38 0 -2.46 -4.26 -0.953 0.880 0.847 0.643
D: Hour 10 τ•2 0.48 3×10-5 0.85 1.47 0.330 0.539 0.293 0.093
E: Hour 16 τ•3 0.90 1×10-11 1.61 2.78 0.623 0.770 0.554 0.208
Average time effect magnitude 1.77 2.84
F: Linear 4.57 0 8.13 4.07 0.910 0.870 0.809 0.506
G: Quadratic 2.87 3×10-5 5.11 1.47 0.330 0.539 0.293 0.093

Table 7: Contrast analysis using traditional contrast L and effect sizes for an illustrative example on safety assessment of two drugs at three time points.
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for contrasts D and G (Table 7). This is one advantage of these 
correlational effect sizes. As shown in the simulation in one-way 
ANOVA shown in Table 3, alerting

γ
 cannot take into account data 

variability. In that simulation study, contrast
γ

 approximately equals to 

effect size
γ

 in each situation. However, the results of contrasts in Table 
7 shows that, contrast

γ
 approximately equals to effect size

γ
 only when 

effect size
γ

 is large (above 0.8); the difference between contrast
γ

 and  

effect size
γ

 is large when effect size
γ

 is small. BESD
γ

 has much different 
value from contrast

γ
 and  effect size

γ
. It seems that effect size

γ
 is the best 

among these four correlational effect sizes. However, it seems that 
the consistent meaning of effect size

γ
 has yet to be discovered whereas 

SMCV has consistent meanings. 

As demonstrated by the comparison of contrasts D and G in 
Tables 6 and 7, one issue of SES is that multiplying a constant to 
the coefficients of a contrast will change the SES value. For example, 
To address this issue, one argument for adopting SES is that before 
calculating SES, one should convert the coefficients 'c

ij
s into 'c

ij
∗ s 

by 
2

1 1

cij
c

JI
cij

i j

ij
∗ =

∑ ∑
= =

 so that 2

1 1

I J
ciji j

∑ ∑
= =

 = 1. For convenience, let us use 

USES to denote SES based on the converted coefficients. The USES’s 
of contrasts D and G are the same (i.e., 1.47) as one wishes (Table 7). 
However, the use of USES incurs another issue as demonstrated in 
the following example.

In this example, assume population means are known as shown 
in Table 8; MSE is 100 (or equivalently σ = 10 ) and sample size is 
10 in each cell. It is trivial to derive that the main effect of Drug C is 
1.9, corresponding USES is 0.4654. Now, if we combine the 3 days, 
we would have cell means shown in the last column of Table 8 and 
we would still have σ = 10 because there is no column effect. Then 
USES becomes 0.2687. Thus, USES produces anomalous behavior. By 
contrast, SMCV is 0.2687 (SES is 0.19) for the effect of Drug C either 
in the factorial experiment or in the combined days. Therefore, USES 
is problematic and cannot help the adoption of SES.

Conclusions and Discussions
For 2-group comparisons, the most commonly used probabilistic 

index for effect sizes may be McGraw and Wong’s CL and the most 
commonly used ratios of mean difference to variability for effect 
sizes are Cohen’s d, Glass’s ∆̂  and Hedge’s g. With the recently 
proposed concept of contrast variable and associated terms of 
SMCV and c+-probability, we can link all of them together. When 
the concept of contrast variable is applied to 2-group comparison, 
the contrast variable represents the difference between two groups. 
Subsequently, c+-probability becomes d+-probability and SMCV 
becomes SSMD. d+-probability is equivalent to CL [21] or P(X > Y) [1, 

17, 28, 42]. Meanwhile, Cohen’s d = 2  SSMD in situations where 
there is no correlation between two groups. SMCV and c+-probability 
are two characteristics of a contrast variable and there is a strong 
link between SMCV and c+-probability. Therefore, a contrast variable 
and its two characteristics can link the commonly used effect sizes 
together and give interpretations to the strength of comparison from 

two perspectives: a probabilistic index and a signal-to-noise ratio.

Based on SMCV and c+-probability, we have a rule for classifying 
the strength of a comparison in a contrast framework. The SMCV-
based classifying rule can be consistently applied to any comparison 
in which the interest is in how far the comparison is away from zero. 
The common comparison is a contrast where coefficients sum to 
zero. It works effectively for either relationship or group comparison 
in either independent or correlated situations and in either two or 
more than 2 groups. As explored in this article, treatment effect, main 
effect, interaction effect, linear relationship, quadratic relationship 
and many other effects and relationships can all be addressed 
consistently using contrast variables and contrast-based classifying 
rule. The examples analyzed in the article also show that the results 
reached using contrast variable and SMCV-based classifying rule are 
sensible and matched with observations and intuitions from the 
data. The SMCV-based classifying rule also gives an interpretation 
to both Cohen’s criterion and McLean’s criterion. Based on these 
interpretations, if one prefers the use of Cohen’s criterion or 
McLean’s criterion, one can readily extend these criteria to any 
contrasts involving more than 2 groups by transforming Cohen’s d to 
d+-probability and then to SMCV under normality.

As described above, SMCV and c+-probability have strong 
connections with commonly used effect sizes. However, SMCV and 
c+-probability have their own features that other effect sizes do not 
have. For example, although d+-probability is equivalent to CL in 
2-groupcomparison, it is easier for one to guess its meaning from the
word “ d+-probability”: the probability of a difference being positive.
Moreover, it is much easier to extend d+-probability to n-group
comparison with a consistent content than CL. When d+-probability is
extended to n-group comparison, it becomes c+-probability which is
still the probability of a linear combination of random variables (with
coefficients summing to zero) being greater than zero. Now we only
need to extend the number of groups from 2 to n. By contrast, when
CL is extended to n-group comparison, it has a different meaning: the
probability of a value from one group being greater than a value from
the other groups [21].

In contrast analysis for factorial experiments, currently the most 
commonly used effect sizes may be SES’s explored by Steiger [29] 
and correlational effect sizes proposed by Rosenthal et al [26,27] in 
addition to those described by Huberty [13] and Vacha-Haase and 
Thompson [34]. As shown in this article, SES effectively takes into 
account data variability and the accuracy of its estimation is robust to 
sample size. The value of SES for the contrast with the same coefficients 
is comparable across different experiments. The drawback is that the 
value of SES is not comparable for contrasts with different coefficients 
and timing a constant to a contrast may change the value of SES. The 
SES after transforming the coefficients may solve this drawback but 
generates new problems with the merging of factor levels. As to the 
correlational effect sizes, like SMCV, both contrast

γ
 and  effect size

γ have 
good properties that they capture data variability effectively and they 
are robust to sample size and coefficients. alerting

γ does not represent 
the size of relationship effectively due to lack of ability in capturing 
data variability and BESD

γ
 does not work effectively because it is not 

robust to sample size (Table 3). contrast effect size
 , ,alerting

γ γ γ and BESD
γ

have a drawback that all variance-accounted-for effect sizes have. 
As Hedges and Olkin [11] pointed out, variance-accounted-for effect 
sizes are intuitively appealing but are not well suited for combination 
across studies because these indices are inherently nondirectional, 
and can have the same value even though the research studies exhibit 
substantively different results.

Time
Day 2 Day 4 Day 6 Combined

Drug
C 14.4 14.4 14.4 14.4
D 10.6 10.6 10.6 10.6

Table 8: Population means for combinations of factor levels in a hypothetical 
experiment.
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In summary, the concepts of contrast variable and associated 
terms of SMCV and c+- probability can link together the most 
commonly used probabilistic index for effect sizes such as McGraw 
and Wong’s CL [21] and the most commonly used ratios of mean 
difference to variability such as Cohen’s d [5]. A contrast variable 
can provide both a probabilistic meaning and an index of signal-to-
noise ratio to interpret the strength of a comparison, which offers 
us a strong base to classify the strength of a comparison as shown in 
Panel A of Table 1. SMCV and c+-probability also give interpretations 
to both Cohen’s and McLean’s criteria [5,22]. The contrast variable, 
SMCV and c+-probability works effectively and consistently for either 
relationship or group comparison in either independent or correlated 
situations and in either two or more than 2 groups. Treatment 
effect, main effect, interaction effect, linear relationship, quadratic 
relationship and any other contrasts can all be addressed consistently 
using contrast variables. The examples in the article show that the 
results reached using contrast variables and the classifying rule are 
sensible and matched with observations and intuitions from the data. 
Therefore, contrast variable, SMCV, c+-probability and associated 
classifying rules may have the potential to offer a consistent 
interpretation to effect sizes.
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