Current Indications, Techniques and Results of Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy for Intra-Abdominal Malignancies

Meagan Wademan, Jinny Ha, Harvinder Singh, Youchitra Markan, Pornma Sharma, Karl Kasamon, Nimagada, Mitch Oh, Wendly Citron, Randy Cohen, Russel Deluca and Cherif Boutros*

Surgical Oncology, Medical Oncology and Radiation Oncology, Tate Cancer Center, Baltimore Washington Medical Center, University of Maryland Medical System, Glen Burnie, MD 21061, USA

Abstract

Over the last decades, there has been a paradigm shift regarding the management of peritoneal dissemination of intra-abdominal malignancies. Previously believed to be an end-stage disease amenable only to palliative management, several studies have reported achieving significant survival advantage by applying cytoreduction of the tumour load with or without intraoperative hyperthermic intraperitoneal chemotherapy administration. It is hard to classify this procedure as curative despite the reported good results in achieving a reasonable 5-years survival. However, its ability to control the disease process is clearly recognized in different types of intra-abdominal malignancies and its role is better understood within the new concept of treating advanced cancer as a chronic disease. The aim of this review is to discuss the concept, techniques, results and complications of this approach. Current indications and future directions will also be emphasized.

Keywords: Peritoneal carcinomatosis; Mesothelioma; Cytoreductive surgery; Hyperthermic intraperitoneal chemotherapy

Introduction

The peritoneum is the largest serosal membrane in the body, and consists, in the male, of a closed sac, while in female the free ends of the uterine tubes open directly into the peritoneal cavity. The peritoneum differs from the other serosal membranes of the body, as there is much more complex arrangement. It consists of two layers, one applied against the abdominal wall cavity while the second is reflected over the contained organs to form different structures such as ligaments, mesentery, omentum, and bursae.

Peritoneal Carcinomatosis (PC), the presence of cancer cells on the surface of the peritoneum, can originate from the peritoneum membrane itself or more frequently is a direct extension of cancer originating from abdominal organs to the peritoneum. Tumours that originate from the peritoneum are rare (1-2 million/year) [1,2]. This category includes mesothelioma and primary peritoneal serous carcinoma. Mesothelioma of the peritoneum resulting from asbestos exposure is less defined than that of pleural mesothelioma [3]. It is a difficult pathological diagnosis that can be mislabeled as an adenocarcinoma of unknown primary; therefore, extensive pathological workup with immunomarkers is essential for the diagnosis.

In the vast majority of PC, the primary origins of peritoneal implants are from malignancies of intra-abdominal organs including: appendix, colon, rectum, stomach, and ovaries. In 20-30% of abdominal malignancies, the only site of tumour recurrence remains intra-abdominal [4]. Ten percent of patients with colorectal cancer already have PC at the time of their diagnosis and 25% of remaining patients will develop PC later on in their disease process [5,6]. Other extra-abdominal organ malignancies such as the breast cancer can also extend to the peritoneum; however, few cases are reported [7-9].

Series reporting the natural history of peritoneal tumours showed poor prognosis despite the best systemic therapy [10-13]. For a long time PC was classified as a non-surgical advanced stage of the cancer disease process because of the wide territory of the peritoneum membrane and the frequent extension of the disease to multiple intra-abdominal organ. The possibility of complete surgical debulking through a long complex surgery, involving resection of multiple abdominal organs, was traditionally aborted as per the high risk of such approach with limited benefits. Similarly, systemic intravenous chemotherapy had a little peritoneal penetration and effect on the peritoneal tumours, as the peritoneum membrane anatomically constitutes a compartment separate from the vascular compartment.

Over the last decade, there has been a paradigm shift in the treatment of PC. With advancements in surgical techniques, equipment, and postoperative care, cytoreductive surgery has become a viable option for the treatment of PC. The peritoneum is considered an intra-abdominal organ that is amenable to resection called Cytoreductive Surgery (CRS). In parallel, a complex peritoneal and intrabdominal organ resection can be achieved with less subsequent mortality. The development of the intraperitoneal route of heated chemotherapy administration (HIPEC) allows for direct contact between the tumour cells and the chemotherapeutic agent to control all residual microscopic disease. The development of CRS-HIPEC revolutionized the natural history of peritoneal tumours. This review will outline the rationale, current applications, complications and future directions of CRS-HIPEC.

Principles and Techniques

Surgery for peritoneal carcinomatosis started in the 1980 in Japan, and then became popular in Europe in late eighties and in USA in 1995 [5,14]. Currently, there are about 20 centres in USA performing CRS-HIPEC. Generally, the procedure is performed through a median laparotomy, providing exposure for a complete meticulous
In summary, the surgical procedure is subdivided into three main parts: 1) Exploration, 2) Cytoreductive Surgery and 3) HIPEC. Only the HIPEC period has a fixed time limit from (60-120 minutes). The other two parts of the procedure are variable depending on the presence of adhesions and the extent of the disease, which may involve several abdominal organs requiring multiple resections. Generally speaking, the whole procedure time varies from 4-10 hours.

Current Applications and Results

The application of CRS-HIPEC therapy revolutionized the management of peritoneal carcinomatosis. For primary peritoneal tumours, malignant mesothelioma had a very poor prognosis in the past with median survival of 9-14 months. A multi-institutional registry study containing 405 patients (318 (79%) had epithelial tumours and 48 patients (12%) had biphasic or sarcomatoid tumours) demonstrated an overall median survival of 53 months and a 5-year survival of 47%. Variables associated with improved survival in the multivariate analysis included epithelial subtype (P<0.001), absence of lymph node metastasis (P<0.001), completeness of cytoreduction scores of CC-0 or 1.
Incomplete CRS does not provide any advantage for these patients and even complete CRS did not show the dramatic results obtained in the case of mesothelioma or peritoneal carcinomatosis from colorectal cancer [14]. Earlier cohort studies have suggested that CRS plus HIPECP improved outcomes in patients with PC from gastric cancer [4,36,37]. A randomized prospective study demonstrated that CRS-HIPECP improved overall survival in gastric PC with acceptable morbidity and mortality (median overall survival in CRS only 6.5 months versus 11.0 months in CRS-HIPEC group, median follow-up 32 months) [38]. Yet, more prospective randomized clinical trials need to be performed to support this treatment strategy. For peritoneal carcinomatosis from the liver, bile duct and pancreas the role of CRS-HIPEC needs to be further elucidated and it is not currently indicated for these diseases.

Complications Related to CRS-HIPEC Therapy

As a major operation that may involve resection of multiple abdominal organs, CRS-HIPEC as expected, carries a considerable postoperative morbidity of 12-56% and a mortality of 0-12% [25,32,39-41] (Table 1). These complications can be grouped in three categories: A- Intra-abdominal leak, abscess and fistula formation of about 15% (This is increased with the number of bowel resections and anastomoses). B- Abdominal wall morbidity related to wound infection, abscess and dehiscence/eversion of about 15% (This is a consequence of impaired wound healing from the application of the HIPEC and potential CRS involving resection of abdominal wall deposits). C- Systemic complications (Including bone marrow suppression, sepsis and pulmonary complications related to the systemic effect of the absorbed peritoneal chemotherapy). From the surgical reductive point, two approaches aiming to decrease the rate of these complications need to be emphasized. First, the number of bowel segment resections should be minimized, favoring complete fulguration of minor deposits in bowel segments when applicable rather than resection. Secondly, in patients with a history of multiple prior abdominal surgeries, preoperative abdominal wall hernias or CRS involving the abdominal wall, the placement of a biomaterial mesh as an adjuvant to abdominal wall closure to enhance the abdominal wall healing can minimize abdominal wall complications [42,43]. Finally, a multidisciplinary approach is crucial to discuss proper timing of the procedure and administration of neoadjuvant and adjuvant therapy, which is a critical component of this procedure. Few clinical trials have attempted to elucidate the role of neoadjuvant approaches. It is currently premature to report a universal agreement of when and what population will be benefited from neoadjuvant therapy. Generally, however, a patient who cannot be completely resected will receive neoadjuvant therapy. The recovery period is variable and is dependent on the extent of the resection, patient’s age and comorbidities. Generally, the average length of stay for uncomplicated cases is 5-7 days. Most patients return to work one month postoperatively and return to baseline functional status within 3 to 6 months after CRS and HIPEC [44,45].

Future Directions

The diagnosis of small implants of PC by current radiological tools is limited. Rather patients present with radiological evidence of large deposits or more often with clinical complaints related to

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>N</th>
<th>Abdominal Wall Morbidity</th>
<th>Bowel and Intrabdominal Morbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franko (2008)</td>
<td>65</td>
<td>10.7%</td>
<td>15.4%</td>
</tr>
<tr>
<td>Kianmanesh (2007)</td>
<td>43</td>
<td>11.6%</td>
<td>13.9%</td>
</tr>
<tr>
<td>Stewart (2006)</td>
<td>110</td>
<td>15.4%</td>
<td>6.3%</td>
</tr>
<tr>
<td>Sugarbaker (2006)</td>
<td>356</td>
<td>3%</td>
<td>5.47%</td>
</tr>
<tr>
<td>Witkamp (2001)</td>
<td>29</td>
<td>3%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Table 1: Complications grouped in three categories.
the peritoneal carcinomatosis and abdominal organ involvement (abdominal distension, pain, bowel obstruction). No current data or guidelines exist today to answer this question. However, we know that the results of CRS-HIPEC are better when applied early in the disease process and it has been already described to offer a second look surgery for a selected group of patients identified as high risk for developing peritoneal carcinomatosis and to apply early/prophylactic HIPEC for these patients [46]. As per today, we do not have the results of such management in the long-term survival of these patients and currently randomized studies in Europe and USA are in process to demonstrate the role of prophylactic CRS HIPEC in colorectal cancer. CRS-HIPEC requires complete exploration of the abdominal cavity and potentially multiple resections of abdominal viscera rendering the laparoscopic approach of a limited value outside of the initial exploration. However, in selected group of patients with minimal CRS, or for the second look surgery and prophylactic HIPEC, laparoscopic HIPEC can be performed. The benefit of such approach includes the avoidance of a large abdominal incision with its related complications (about 15%). In addition laparoscopy is traditionally associated with less postoperative pain, shorter hospital stay and earlier returns to work activity.

Conclusion

CRS-HIPEC is a relatively new modality of management of patients with peritoneal carcinomatosis. A multidisciplinary approach play a major role in patient selection, timing of the surgery, Perioperative therapy and is crucial to obtain favourable results. According to the current available data, the best results of CRS-HIPEC therapy are achieved in patients with primary peritoneal malignancy and/or only abdominal dissemination of colorectal, appendicular and ovarian cancer. Future directions include extending the indication to different types of cancers, the role of minimal invasive approach, and the use of prophylactic HIPEC for selected group of patients with the highest risk to develop peritoneal carcinomatosis.

References

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:
- User-friendly/feasible website-translation of your paper to 50 world’s leading languages
- Audio Version of published paper
- Digital articles to share and explore

Special features:
- 200 Open Access Journals
- 15,000 editorial team
- 21 days rapid review process
- Quality and quick editorial, review and publication processing
- Indexing in PubMed (partial), Scopus, DOAJ, EBSCO, Index Copernicus and Google Scholar etc
- Sharing Options, Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at http://www.omicsonline.org/submission/