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Introduction
Alzheimer’s disease (AD), the most common cause of dementia, is 

a neurodegenerative disorder which leads to loss of intellectual ability 
and eventually resulting in death. Early detection of AD is seen as 
important because treatment may be most efficacious if introduced at 
its nascent stage. In practice, a diagnosis is largely based on clinical 
history and examination supported by neuropsychological evidence 
of the pattern of cognitive impairment [1]. However, the reality is 
that only about half of those with probable dementia are actually 
recognized in the primary care setting [2]. Microarrays are at the core 
of a biotechnology, which assists researchers to analyze the expressions 
of thousands of genes under different samples (conditions) at the same 
time. However, researchers face challenge in analyzing the microarray 
data due to its high dimensionality, noise and complexity in the 
gene expression dataset, which are characteristic of diseases such as 
Alzheimer’s.

Therefore, it is important to find salient features from the 
Alzheimer’s disease gene expression dataset, which can assist in 
providing additional information in differentiating sub types of the 
disease along with the underlying biological phenomenon. Mining 
such data poses a critical problem with an aim to find out patterns 
and knowledge from these huge amounts of gene expression data. 
Therefore there is a need to develop an automatic system, which has 
the ability to classify the Alzheimer’s disease and improve the precision 
and accuracy of the diagnosis [3,4]. This paper presents a data adaptive 
partitioning schema, which finds efficient partitions in every gene using 
gradient-based histogram partitioning approach. These partitions assist 
in finding the relationship and patterns among different genes in gene 
expression dataset in the form of rules, which helps in classifying new 
samples into their respective sub types of Alzheimer disease. Below 
are the outlines of various related research in the Alzheimer disease 
classification.

Related Research
Joshi et al. [5] have proposed an attribute evaluation classification 

approach for the classification of Alzheimer’s disease by selecting the 
most important attributes by using various feature selection methods 
such as chi-squared, gain ratio etc. and then compared various 
classification techniques to find best classification technique for the 
given data such as Neural Networks (NN) and Machine Learning 
(ML) methods. The limitation of feature selection method is that each
feature is considered separately and feature dependencies are ignored,
which can adversely affect the accuracy and efficiency of classification
techniques. Lee et al. [6] classifies the Alzheimer’s data by employing
a rough-fuzzy hybrid approach called ARFIS (a framework for
Adaptive TS-type Rough Fuzzy Inference Systems). In this approach,
the entropy-based discretization technique is employed to find the
boundary points on the training data in order to find best partitions
in the data which assists in producing maximum information gain.
The rough set-based feature reduction method is employed to find the
relevant attributes which helps in classifying the future samples into
their respective classes. However, they have not used any validation
measure to validate their partitions as to whether they are efficient
or not. Lopez et al. [7] presented a framework for the classification of
Alzheimer’s disease by employing kernel based Principal Component
Analysis (PCA) to reduce the feature space by transforming the data
into non-linear mapping. Linear Discriminant Analysis (LDA) is then
applied on the reduced data that groups the data according to their class 
labels. Finally, this reduced feature space is used to train a kernel-based 
Support Vector Machine (SVM) classifier, which assists in classifying
Alzheimer’s disease. Kloppel et al. [8] combined datasets from multiple 
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Abstract
Microarrays have already produced huge amounts of valuable genetic data that is challenging to analyse due 

to its high dimensionality and complexity. An inherent problem with the microarray data which is characteristic of 
diseases such as Alzheimer’s is that they face computational complexity due to the sparseness of the points within 
the data, which affect both the accuracy and the efficiency of supervised learning methods. This paper proposes a 
data-adaptive rule-based classification system for Alzheimer’s disease classification that generates relevant rules 
by finding adaptive partitions using gradient-based partitioning of the data. The adaptive partitions are generated 
from the histogram by analyzing Tuple Tests following which efficient and relevant rules are discovered that assist 
in classifying the new data correctly. The proposed approach has been compared with other rule-based and 
machine learning classifiers, and detailed results and discussion of the experiments are presented to demonstrate 
comparative analysis and the efficacy of the results.

Data Adaptive Rule-based Classification System for Alzheimer 
Classification
Mohit Jain1*, Prerna Dua2, Sumeet Dua1 and Walter J Lukiw3

1Department of Computer Science, Louisiana Tech University, Ruston, LA 71270, USA
2Department of Health Informatics and Information Management, Louisiana Tech University, Ruston, LA 71270, USA
3Neuroscience Centre of Excellence, Louisiana State University Health Sciences Centre, New Orleans, LA 70112, USA

Journal of 
Computer Science & Systems BiologyJo

ur
na

l o
f C

om
pu

ter Science & System
s Biology

ISSN: 0974-7230



Citation: Jain M, Dua P, Dua S, Lukiw WJ (2013) Data Adaptive Rule-based Classification System for Alzheimer Classification. J Comput Sci Syst 
Biol 6: 291-297. doi:10.4172/jcsb.1000124

Volume 6(5)291-297 (2013) - 292 
J Comput Sci Syst Biol       
ISSN: 0974-7230 JCSB, an open access journal  

sources and used SVMs to form a classification system by classifying 
the grey matter segment of T1-weighted MR scans from Alzheimer’s 
disease patients from two centres with different scanning equipment. 

The objective of this work is to develop a partitioning approach 
in the gene expression data to generate data-adaptive partitions for 
rule-based classification. The data partitioning schema is based on the 
premise that rapid but infrequent changes in frequency distribution 
of the gene expression data can be effectively and efficiently employed 
as the basis of discovering data-adaptive boundaries and partitioning 
of the data. These partition labels are then employed in a rule-based 
classification framework to generate rules, whose specificity and 
sensitivity in classification is evaluated by classifying new samples into 
their respective classes. These rules can assist in finding important 
relationship and insightful patterns between gene expressions and 
helps in predicting patient sample into a diseased or a healthy sample.

Methodology
Many data mining techniques have been developed to extract 

potentially useful information or knowledge from large databases. A 
data-mining technique such as rule-based classification is a category 
of supervised classification that is employed for discovering knowledge 
in a variety of application domains. Specifically, for gene expression 
analysis, rules can represent an important relationship or associations 
between different genes in a gene expression dataset or relationship 
between the genes and the classes [9,10]. Table 1 shows an example of 
a gene expression dataset which has two classes disease and healthy. By 
applying rule based classification algorithm on a dataset, we can form 
meaningful rules between the genes and the samples. For example - 

1 2 3, , →Ruleg g g disease, this 1 2 3, , →ruleg g g disease rule implies 
that if a new sample express genes g1, g2 and g3 then the sample is likely to 
be of type disease. Therefore this rule can be used to classify new samples 
of unknown type as disease. Similarly, other rules can be found such as 

5 7 9, , →Ruleg g g Healthy which implies if a new sample expresses 
genes g5, g7 and g9, it is likely to be of type healthy. A rule can contain 

more than three genes, for example, 5 7 8 10, , , →Ruleg g g g Healthy

which implies if a new sample expresses genes g5, g7, and g10 is likely to 
be type healthy.

Rule-based algorithms rely on discretization of data and are 
represented in the form of categorical variables. As the number of 
partitions increases, the number of rules grows exponentially as shown 
in Equation 1; this growth can result in a number of insignificant or 
irrelevant rules, which can hamper the classification system. 

= dN p              					                    (1) 

Where, ‘N’ are the number of generated rules, ‘p’ are the number of 
partitions and‘d’ are the number of dimensions in the dataset.

In order to generate efficient and accurate rules, the data need to 
be split or divided into different partitions, resulting in discretization. 
Once these partitions are found, they could then be subjected to 
classification rules or models to observe meaningful associations. The 

partitions were generated in two different phases. In the first phase, 
partitions are generated using different Tuple Tests; in the second 
phase, significant rules are generated from the partitions obtained 
in the first phase. Since the number of partitions is linearly related 
to the number of discrete variables that can be found in the data, the 
partitioning or splitting point of the data is critical to find relevant 
rules. These rules observed from the transformed data make an efficient 
classifier. Our objective is to find data adaptive partitions by analyzing 
the data represented as a histogram and discover the efficient partitions 
using different Tuple Tests, which helps in generating efficient rules 
and discards all irrelevant rules. Hence, these efficient rules will assist 
in classifying new samples into the irrespective classes. We have 
experimented, compared and validated our obtained partitions and 
rules on a well known hippocampal gene expression dataset. The 
proposed algorithmic framework is the gradient-based partitioning 
rule-based classification method, which is described the section below.

Gradient-based Partitioning
In gradient-based partitioning approach, a gradient is calculated 

for each vertical bar of the histogram to validate whether the bar is 
a peak or valley, and then the gradient is compared with the default 
threshold range, which is defined by the user or expert. If the gradient 
of the bar is less than the lower limit of the threshold range, then the bar 
is called a valley, while if the gradient of the bar is greater than the upper 
limit of the threshold then the bar is called the peak. These peak and 
valley are used in finding the partitions in the dataset by performing 
different Tuple Tests on the histogram data. These obtained partitions 
will allow in generating the rules in the data, and these rules will help in 
classifying the new sample into their respective classes. Figure 1 shows 
the algorithm for the rule-based classification system.

The algorithm has been divided into three phases as shown in 
Figure 1. Phase 1 comprises of generating partitions using different 
Tuple Tests. Phase 2 encompasses rule generation where absolute 
membership is assigned to values that help find the antecedent of 
the rule following which the consequent class of the rule is found. 
In Phase 3, classification schema is transcribed to explain how new 
samples or data are classified into their respective classes. The proposed 
methodology and the algorithm with the explanation of each phase are 
described below.

Phase 1: Generate adaptive partitions

Phase 1 is used to generate adaptive partitions which have been 
divided into three steps. Step 1 is the data normalization Step 2 is 
histogram analysis to identify the peak and valley in a histogram and 
Step 3 is to generate adaptive partitions using different Tuple Tests.

Step 1: Data normalization

Normalization of the data is performed to scale the values and to 
avoid the effects of extreme values if the data distribution is far from the 
mean. Data normalization also keeps each dimension of the dataset in a 
same range, in this case by transforming the raw data into the range of 
0 to 1. Due to the large variability in the expression values of the genes, 
normalization is performed on the dataset by first applying z-score 
normalization and then min-max normalization which are defined 
below: 

Z-score normalization: In z-score normalization, instances of a 
variable are normalized based on the mean and standard deviation. It 
is denoted by 'z  in Equation 2:Table 1: An example of a Gene expression dataset.

Samples Expressed Genes Class Labels
S1 g1 g2 g3 g4 Disease
S2 g2 g4 g6 Disease
S3 g10 g5 g7 Healthy
S4 g8 g5 g7 g9 Healthy
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' µ
σ
−

=
zz 		  			                   (2)

Where µ = mean of a variable σ = standard deviation of a variable, z is 
the instance of a variable which is to be mapped in the new range, and 

'z  is the new value of z which is in the new range.

Min-max Normalization: Suppose that minA and maxA 
are the minimum and maximum values of an attribute A. Min-
max normalization maps a value of vi into '

iv in the range 
[ _ max , _ min ]A Anew new by computing the following Equation 3:

' min ( _ max _ min ) _ min
max min

−
= − +

−
i A

i A A A
A A

vv new new new       (3)

For example, with [ _ max 0, _ min 1]= =A Anew new , the range of 
the data is shifted to [0,1]. In Figure 2, g1, g2 and g3, are genes of the 
dataset where raw data has been normalized into range (0 to 1) by first 
applying first z-score followed by the min-max normalization. Figure 2 
shows the snapshot of the dataset before and after normalization.

Step 2: Identifying peak and valley in a histogram

Step 2.1: Histogram is drawn for each gene of the dataset where 
bins are on the x-axis and frequency counts are on the y-axis as shown 
in Figure 3. Frequency count is defined as the total number of data 
points that lie in that bin range. 

Several experiments were conducted to determine the optimum 
bin width. It was observed that bin width from 0.01 to 0.05 provides 
better performance. Let us assume gene (g1) has normalized values 
[0.01, 0.08, 0.04, 0.09, 0.05, 0.09, 0.07, 0.02, 0.08, 0.03, and 0.085]. These 
normalized values have been plotted into the histogram in Figure 3, 

where there are 5 bins each of width of 0.02. In Figure 3, first bin ranges 
from 0 to 0.02 and frequency count is 2, as there are two normalized 
values for g1 (i.e., 0.01 and 0.02) that fall in this range. Similarly, width 
of the second bin ranges from greater than 0.02 to 0.04 and frequency 
count is 2 (0.03, 0.04), the third bin ranges from greater than 0.04 to 
0.06 and frequency count is 1 (0.05) and so on.

If there are 100 genes in a dataset, then there will be 100 histograms 
and each histogram is independent of the other i.e., at this point we are 
not concerned about the dependencies between the genes and consider 
each gene independently. Our objective is to find efficient partitions for 
each gene in the gene expression dataset. 

Step 2.2: Peaks and valleys are identified once the normalized data 
is plotted into the histogram. The default threshold range varies from 
-λ to λ where λ is a number set by a user or expert. We performed 
various experiments by varying the value of λ from 2 to 10. Our 
experimental results show that the performance varies with the dataset 
and classification always perform better when the value of λ ranges 
from 4 to 7. The highest accuracy in the classification results for this 
data set was observed when λ was set to5. A gradient is calculated 
for each vertical bar of the histogram to identify whether the bar is a 
peak or a valley and then the gradient is compared with the default 
threshold range (-λ to λ) where λ is a number and it depends upon 
data which is set by a user or an expert. Peak and valley are defined 
below in Equations 4 and 5, respectively and gradient (m) is defined 
in Equation 7.

Peak: A vertical bar in a histogram is called a peak if the gradient 
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Figure 1: Gradient based partitioning rule-based classification framework.

Figure 2: Raw data transformed to [0,1] by applying normalization.

Figure 3: Gene (gi) plotted into a histogram, where i=1,2,3….total number of 
genes in a dataset.
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(‘m’) of the bar is greater than the higher limit of the threshold range 
(‘λ’) and it is defined by ‘p’.

Valley: A vertical bar in a histogram is called a valley if the gradient 
(‘m’) of the bar is less than the lower limit of the threshold range (‘-λ’) 
and it is defined by ‘v’.

Unassigned histogram: A vertical bar in a histogram is called an 
unassigned histogram if the bar of the histogram is neither a peak nor 
a valley and its gradient (‘m’) lies between (‘-λ to λ’) and it is defined by 
‘x’ as shown in Equation 6.

( ) λ= >i ipeak p m 				                    (4)
( ) λ= < −i ivalley v m 			    	             (5)

Unassigned Histogram ( ) λ λ= − < <i ix m   		               (6)
−

=
−

i j
i

i j

y y
m

x x                                               (7) 

Where, i is the ith vertical bar of the histogram, mi is the gradient 
between ith vertical bar and last identified peak or valley, yj is the 
frequency count of vertical bar, yj is the frequency count of previous 
peak or valley is identified, xi is the bin width of ith vertical bar, and xj is 
the bin width of previous peak or valley is identified.

Step 3: Finding adaptive partitions using different tuple test

After identifying peaks and valleys in a histogram, the next step is 
to find the adaptive partitions using four different Tuple Tests: Peak-
Valley-Peak Test (PVP), Valley-Peak-Valley Test (VPV), Peak-Valley-
Peak-Valley-Peak Test (PVPVP), and Valley-Peak-Valley-Peak-Valley 
Test (VPVPV). Each Tuple Test is independent of the other and rules 
are generated from each of these tests. Following the rule generation, 
the classification accuracy of each test is compared with the existing 
rule-based classifiers and other machine learning algorithms. The 
assumptions made for these Tuple Tests are:

1.	 If there are two or more consecutive valleys or peaks or any 
unassigned points in the histogram, then they will be combined 
as one valley or one peak or one unassigned point respectively. 
For e.g. if two consecutive valleys i.e. valley v1 is from 0.05 to 
0.1 and valley v2 is from 0.1 to 0.15, then both valleys (v1 and v2) 
are combined into one valley, i.e. v3 = v1+ v2 and v3 range will be 
from 0.05-0.15 and will be called a partition range. 

2.	 If there is no peak in the histogram, then the whole histogram 
will be considered as one adaptive partition and the partition 
range will be from 0 to 1.

Peak-Valley-peak test (PVP)

Once the distribution of the data points in bins is obtained using 
a histogram and the peaks and valleys are identified, the next step 
is to find the combinations of the Peak-Valley-Peak triplets in the 
histogram. Each Peak-Valley-Peak combination gives one partition. To 
obtain Peak-Valley-Peak combination, some assumptions have been 
made. The assumptions are as follows:

1.	 In between two peaks, (pi and pj) if there is any valley (v) 
then peaks pi and pj and valley (v) will be combined into one 
adaptive partition.

2.	 In between two peaks (pi and pj), if there is any unassigned data 
point (x) then peaks (pi and pj) and unassigned data point (x) 
will be combined into one adaptive partition.

3.	 In between two peaks (pi and pj), if there is both valley (v) and 
unassigned data point (x) then peaks (pi and pj), valley (v), and 
unassigned data point (x) will be combined into one adaptive 
partition.

4.	 If there is only one peak (p1) in the histogram, then the partition 
range will be from 0 to p1 and p1 to 1, i.e. two adaptive partitions.

5.	 If there is a combination of Peak-Valley-Peak (pi-v-pj) triplet in 
the histogram, then the partition range will be from half of the 
partition from the left of pi and half of the partition from the 
left of pj because both the peaks (pi and pj) are being shared with 
other partitions as well. 

Figure 4 shows the plot of the histogram, which is used to show 
the distribution of the data for a gene (gi). The histogram has 10 
bars where each bar is a bin of width 0.1. Several experiments were 
conducted to determine the width of a bin ranging from 0.01 to 1. 
It was observed that for our dataset a bin width of 0.1 gave the best 
classification accuracy. The x-axis in the histogram represents the bin 
number and y-axis the frequency count. According to step 2.2 we can 
identify peak (p), valley (v) and unassigned data points (x) in this plot. 
Figure 5 shows the identification of the peak, valley and unassigned 
data points. In Figure 5, we can observe three partitions based upon 
the above assumptions made in Peak-Valley-Peak Test (PVP). First 
partition is from bin number 1 to bin number 5 its partition range is 
from 0.5 to 0.45. Second partition is from bin number 5 to bin number 
7 and its partition range is from 0.45 to 0.65 and third partition is 
from bin number 7 to bin number 10 and its partition range is from 
0.65 to 1. Similarly other Tuple Tests can be performed by using same 
assumptions for Valley-Peak-Valley (VPV) Tuple Test, Peak-Valley-
Peak-Valley-Peak (PVPVP) Tuple Test and Valley-Peak-Valley-Peak-
Valley (VPVPV) Tuple Test.

Phase 2: Rule generation

The adaptive partitions obtained in Phase 1 will support in 
generating rules, which eventually assist in the classification process. 
Phase 2 has been divided into four steps. Step 1 is assigning membership 
values to data points based on their presence or absence in the partition. 
Step 2 is to find classes for the partitions and generate rules. Step 3 
is to assign classes to the empty partitions based on the neighboring 
partitions, and Step 4 is to represent rules. Below is the explanation of 
these four steps:

Figure 4: Plot of the histogram data for a gene gi showing10 bins.
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Step 1 Assigning absolute membership values to data points

Absolute membership, i.e., 0 or 1 is employed to the data point 
where ‘0’ means the data point is absent in the partition, and ‘1’ means 
the data point is present in the partition. It is denoted by µ and it is 
defined in Equation 8. For e.g., let us assume there are two partitions P1 
and P2 in a gene. Partition P1 is 0 to 0.5 and P2 is 0.5 to 1. If a data point 
has a value of 0.8, then 0 will be assigned to P1 and 1 will be assigned 
to P2.

Let us assume that gene ‘gi’ is divided into K partitions

1 2{ , ,...., }k k k
kA A A  where 1

kA the ith partition of gene is ‘gi’ and ‘k’ 
indicates the total number of partitions in gene ‘gi’. We have defined 
the membership function as follows;

1 2( ) {1, , , 0µ = ≤k
i x p p else and 0			                  (8)

Where, µk
i is an absolute membership value of data point ‘x’ in 

ith partition of a gene and P1 and P2 are lowest point and highest point 
respectively of a partition range. 

Step 2 Finding classes and generating rules

Rule formation has two parts, consequent part and antecedent 
part. Consequent part is the left side of the rule, which defines partition 
ranges of all the genes while antecedent part is the right side of the 
rule, which defines classes. Ishibuchi et al. [11] has explained how to 
assign classes to the generated rules. The classes can be determined 
by the following procedure. Let us assume that there are m samples 

1 2.....( , )=p p p pmx x x x where p=1, 2,….m are training samples from M 
classes: C1, C2, …..CM and µ is an absolute membership value of a data 
point in a partition. The consequent part of a rule can be obtained by 
the following procedure:

Rules are generated by finding the dependency between the 
partitions of different genes. A partition can have samples of different 
classes however each partition has one rule; therefore, we can assign 
only one class to a rule. Equation 9 finds the weightage of each class in 
a partition by finding an absolute membership value of each data point, 
which is denoted by βCT where CT= {classC1, classC2,.....classCM. 
Equation 10 shows the class, which has the maximum weightage or 

domination in a partition; hence, the class with a maximum weightage 
will be assigned to the rule and is denoted by βCX.

Step1: Calculate βCT for T=1,2,….M as

CT 1 2( ) ( )β µ µ∈= ∑


k k
p CT i p j px x 		  k

giG 	                  (9)

Step 2: Find class X(CX) by

CX C1, C2 CMmax{ ,......, }β β β β= 	  		                  (10)

By this procedure the consequent part or class is determined for 
the rule. Therefore, if a new sample matches any of the antecedent 
part of the rule, then its corresponding class will be assigned to a new 
sample. Moreover, there can be empty partitions because of an absence 
of data points in it. To assign classes to the empty partitions, the nearest 
neighborhood approach has been employed which is explained in step 
3. 

Step 3 Empty partitions

In some cases, partitions can be empty. Classes are assigned to 
the empty partitions based on neighboring partitions. If a test sample 
belongs to empty partition, then the class is assigned to the sample 
depending on the neighboring classes around the empty partition. 
Table 2 shows the example for empty partitions, P5 and P12. For example, 
if a test sample belongs to empty partition P5, then it is assigned to class 
‘C1’ since ‘C1’ dominates around empty partition P5.

Step 4 Rule representations

Let n
iR be the label of the rules and  k

giG  be represent the partition 
of the genes, where n=number of rules, i=1, 2,…,n, G represents the 
gene expression dataset, g is the ith gene in the dataset, k are the total 
number of partitions for gene ‘gi’. Below are examples of a rule: 

Rule R1: g1(0-0.5) ^ g2(0-0.4) ^ g3(0-0.3) ^ g4(0-0.2) → C1,

Rule R2: g1(0-0.5) ^ g2(0.4-0.7) ^ g3(0-0.3) ^ g4(0.2-0.5) → C2, 

Rule R3: g1(0.5-0.1) ^ g2(0.4-0.7) ^ g3(0.7-1) ^ g4(0.2-0.5) → C3.

Rules, 1, 2 and 3 are the representative rules and the values in the 
brackets represent the partitioning ranges. For e.g. g1 (0-0.5) implies g1 
is a gene and its one of the partition has a range from 0 to 0.4. The part 
of the rule before the arrow is called antecedents of the rule, whereas 
‘C1’, ‘C2’ and ‘C3’denotes the class name called the consequent of the 
rule. Figure 6 shows the pseudocode for generating rules. The input 
to the algorithm is number of partitions (n), dataset (y), and partition 
points (pp), and output are rules (ci). To generate rules, first assign 
absolute membership 0 and 1 to the data, which is explained from Lines 
01 to 07; then find all possible combinations of the partitions, which 
are explained from Lines 08 to 12. Finally, classes are assigned to the 
partitions or the consequent of the rule that is explained from Lines 
13 to 27.

Phase 3: Classification and validating experiments

We performed several experiments to validate the results. The 
results were evaluated and compared by using statistical measures, 
such as 10-fold cross validation, sensitivity, specificity, and F-measure 
[12-14] and the summary of the comparison results have been shown 
in Table 3.

Figure 5: Identification of peak (p), valley (v) and unassigned point (x) on a 
histogram.

Table 2: Assigning classes to empty partitions.

C1 C1 C2 C3
C1 Empty partition (P5) C1 C2
C2 C3 C2 Empty partition (P12)
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Results
In this section we describe the experiments that have been 

performed to evaluate the accuracy and efficiency of the data-
adaptive rule-based classification system. Results obtained through 
these experiments have been compared to rule-based and non-rule-
based classification methods. Obtained results have been validated by 
using statistical measures such as K-fold cross validation, sensitivity, 
specificity, F-measure, precision, etc. A the algorithms have been 

executed on Intel® Core™ i7 CPU 930@ 2.8 GHz 2.79 GHz with 12 GB 
RAM using MATLAB software. 

Dataset

In this paper we used hippocampal gene expression data set 
provided by Blalock et al. [15]. This dataset is readily available from 
Gene Expression Omnibus (GEO) repository on NCBI website. This 
dataset originally consists of 22,283 genes and 31 samples. In order to 
avoid false negatives and false positives, the dataset was pre-processed 
by removing the genes that were associated with absent or missing tag. 
The data was further pre-processed by only considering the genes that 
had the p-value <=.05. This resulted in a reduced dataset consisting of 
4961 genes. The distribution of expression values of the genes across 
different samples was normalized using z-scores standardization.

In gradient-based partitioning approach, different threshold range 
of λ (2 to 10) and bin width range (0.01 to 1) have been set to evaluate 
the performance of four Tuple Tests such as Peak-Valley-Peak (PVP) 
Tuple Test, Valley-Peak-Valley (VPV) Tuple Test, Peak-Valley-Peak-
Valley-Peak (PVPVP) Tuple Test, and Valley-Peak-Valley-Peak-
Valley (VPVPV) Tuple Test. Table 3 compares the performance of the 
proposed data- adaptive rule-based classification method, rule-based 
classification method and non-rule-based classifiers. Table 3 shows 
that proposed method out performs all the rule-based classifiers and 
non-rule-based classifiers except Decision Table and JRIP, which 
have competitive accuracy with the proposed method. The proposed 
method performs better because the partitions increased the separation 
between the classes in Alzheimer’s data due to the adaptive nature of 
the partitions. Further, these partitions are neither too fine nor coarse 
that generated efficient rules to classify the future sample into their 
respective classes. We have compared the results by taking different 
subset of the genes. The gene subset selection has been done by using 
Chi-Squared feature selection that form the reduced feature set. We 
have used four different subset of genes i.e., top 100 genes, top 150 
genes, top 200 genes and top 250 genes to compare and analyze the 
results. Proposed gradient-based partitioning has a best classification 
accuracy of 74% for all the subset of genes i.e., 100, 150, 200 and 250 
genes. The proposed methodology generates same accuracy of 74% 
for all the subset of genes as there are few samples in the dataset 
(31 samples), that leads to same number of partitions and partition 
ranges for all the subsets. Based upon the results of Table 3, proposed 
methodology outperforms all the non-rule-based classifiers because 
rules promote understanding and provide insightful information of 
the relationship and patterns in the gene expression dataset. Proposed 
partitioning rule-based classifier has either superior or comparable 
accuracy as compared to other rule-based classifiers such as Decision 
Table, JRIP, PART and NNGE. 

Conclusions
A significant percentage of rule-based classification algorithms 

offer diminished performance when encountered by a large number 
of rules due to inefficient partitions and resulting in ineffective 
classification system. To generate efficient rules, partitioning of the 
data is important as the number of rules depends on the number of 
partitions. As the number of partitions increases, the number of rules 
grows exponentially; this growth can result in a number of insignificant 
or irrelevant rules which can hamper the classification system. 

This works presents a data-adaptive partitioning approach in which 
each gene is partitioned independently, and these partitions assist 
in finding rules for classification purposes. Using different statistical 

Figure 6: Pseudo code for Generating Rules.
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measures such as TP rate, FP rate, Precision and F-measure, has validated 
results obtained. Comparison has been done for the overall accuracy 
of different classification methods such as the proposed data-adaptive 
partitioning rule-based classification system, rule-based classification 
(RBC), and non-rule-based classification system by employing 
Blalock dataset. Results demonstrate that partitions generated from 
the histogram by using different gradient-based partitioning give 
adaptive partitions which assist in generating efficient rules, because 
these adaptive partitions increases the separation between the classes 
and makes an effective classification system. Moreover, the obtained 
partitions are efficient because comparing every peak and valley 
with the threshold range in order to remove outlier or bad partitions 
validates them. The generated rules are easy to interpret and more 
accurate for gene expression analysis than other methods and gives 
concise and biologically meaningful rules. The proposed algorithm is 
computationally inexpensive and its space and run time costs are only 
polynomial. Moreover it’s scalable to large datasets on which other rule 
mining classifiers are computationally challenged. 

Based on the outcome of classification accuracies, the methods 
studied can be of enormous use by producing optimally actualized data, 
which can be applied in the medical decision-making. The automated 
machine learning methods can produce more reliable classifications 
that can aid medical professionals in the early diagnosis and treatment 
of AD. 
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