alexa Depth and Seasonal Variations for the Soil Radon-Gas Concentration Levels at Wadi Naseib Area, Southwestern Sinai, Egypt | OMICS International
ISSN: 2161-0398
Journal of Physical Chemistry & Biophysics

Like us on:

Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Depth and Seasonal Variations for the Soil Radon-Gas Concentration Levels at Wadi Naseib Area, Southwestern Sinai, Egypt

Korany KA1*, Shata AE2, Hassan SF2 and Nagdy MSE1
1Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
2Nuclear Material Authority (NMA), P. O. Box: 530 El Maadi, Cairo, Egypt
Corresponding Author : Korany KA
Department of Physics
Faculty of Science
Helwan University, Cairo, Egypt
E-mail: korany81[email protected]
Received June 17, 2013; Accepted July 29, 2013; Published July 31, 2013
Citation: Korany KA, Shata AE, Hassan SF, Nagdy MSE (2013) Depth and Seasonal Variations for the Soil Radon-Gas Concentration Levels at Wadi Naseib Area, Southwestern Sinai, Egypt. J Phys Chem Biophys 3:123. doi:10.4172/2161-0398.1000123
Copyright: © 2013 Korany KA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Physical Chemistry & Biophysics

Abstract

This work aims to evaluate the soil radon gas concentration levels at different depths in Wadi Nasieb area. The area under investigation is located about 40 km east of Abu Zeneima town in the south western part of Sinai Peninsula. It is bounded by Long. 33°22’/ and 33°25’/ E and Lat. 29°10’ 30” and 29°05’/ N, The radon gas concentration were measured using CR-39 etch track detectors in both summer and winter times at different depths (25, 50, 75 and 100 cm) covering several geological formation. Twenty one stations were chosen to cover several geological formations in the studied area. According to the obtained data, these stations were classified to three main sets of stations (low, medium and high level stations) the obtained results were as follows: i) For low level zone the soil radon concentration ranges from 1.035 ± 0.098 to 1.857 ± 0.160 (KBq/m3) in summer and from 0.628 ± 0.116 to 1.421 ± 0.180 (K Bq/m3) in winter, ii) For the medium level zone, it ranges from 1.742 ± 0.168 to 4.347 ± 0.359 (KBq/m3) in summer and from 1.108 ± 0.153 to 2.996 ± 0.202 (K Bq/m3) in winter, iii) For high level zone, it ranges from 10.370 ± 0.402 to 21.361 ± 0.410 (K Bq/m3) in summer and 7.224 ± 0.228 to 13.088 ± 0.369 (K Bq/m3) in winter. The highest values of soil radon concentration obtained are found in station (9) in both seasons at all depths. This may be related to the high uranium content for this geological formation. As expected, the data show that the values of radon gas and its progeny concentrations increases as depth increases. The concentration of radon at a depth of 100 cm is about twice higher than the value of radon concentration at a depth of 25 cm.

Keywords
Concentration levels; Wadi Nasieb; Uranium series
Introduction
Naturally Radon (Rn) is found as a product of the radioactive decay series (Uranium series - Thorium series-Actinium series). During the decay of Uranium series it produces Radium 226Ra isotope which decays to radon 222Rn with a half-life of (3.82days). Also Thoron 220Rn is the result of the decay of Thorium in the Thorium series, it has a half-life time of (54.4) seconds. Finally Actinon 219Rn is the result of the decay of Actinium in the Actinium series, it has a half-life time of (3.92) seconds. All these isotopes decay by alpha emission unless actinon is also a gamma emitter. The abundance of actinon (219Rn, t1/2 = 3.92 s) in gases from geological sources is limited due to its short half-life, which means that most of it will decay during the slow exhalation processes from rocks and soils, and also due to the fact that the precursor, 235U, constitutes only 0.7% of natural uranium. The abundance of 232Th in the Earth’s crust is around three times higher than that of 238U, but since the half-life of 232Th is longer by nearly the same factor, the average rate of production of 220Rn (t1/2 = 54.4 s) and 222Rn (t1/2 = 3.82 d) is about the same [1]. However, the shorter half-life of thoron results in a greater proportion of it decaying before it can be from the ground [2]. Thus, radon alone is usually considered as being important in studies of household radon levels. At least 80% of the radon emitted into the atmosphere comes from the top few meters of the ground. The radon emanation rate varies from one place to another due to differences in radium concentration and soil parameters such as moisture content, porosity, permeability, and grain size [2], Radon Emanation and migration in the Earth and the atmosphere have been the subject of numerous studies, in Egypt [3] and all over the world [4].
The gas radon measured stations in the present study cover the whole area of Wadi Naseib and inserted in the different rock units (Figure 1).
The aim of the present work is to Study the relation between radon gas concentration and Uranium concentration (ppm) at different depths and find relationship between the radon gas concentration with depth and also the Uranium concentration (ppm), as well as soil parameters such as moisture content, porosity, permeability, and grain size.
Geological setting
The Wadi Nasieb area is a part of south western Sinai, Egypt (Figure 1) and is occupied by basement rocks of Late Proterozoic age, which unconformably overlain by Paleozoic rocks. Wadi Naseib area is located about 40 km east of Abu Zeneima town in the south western part of Sinai Peninsula. It is bounded by Lat. 29°10’ 30” and 29° 05’/ N and Long. 33°22’ and 33°25’ E (Figure 1).
Measurement technique
Measurements were carried out by employing twenty one tubes of length 100 cm. Each one was fitted with a four pieces of CR-39 plastic foil 500 μm thick and (1 cm×1 cm) in cross section. These detectors are sensitive to α-particles and are widely used for radon and its progeny measurements [5]. The detectors were fixed inside the pipe at different depths 25, 50, 75 and 100 cm from its top side and covered from the top with metallic cover and from the bottom with filter paper. This configuration was used in order to maintain the same calibration conditions and to stop the thoron (220Rn) from entering the tube, while allowing the radon gas to pass through the tube, for the selected measuring tube (Figure 2).
Twenty one holes of 10 cm in diameter and 100 cm in depth were dug in each chosen point of measurement (Station). Every station was filled with a tube fixed with CR-39 detectors at different depths (25, 50, 75 and 100 cm). The detectors were mounted in such a way that the sensitive surfaces facing the air coming from the underground , taking due care that there was nothing to obstruct the detectors. Then each hole was refilled with soil. The α-particles originating from radon and its progeny were registered as tracks in the detectors, if α-particles from radon and its progeny have their energies in the range of about 1.7- 4.1 MeV [6].
Thus, the radon progeny, which plate out on the surface of the detectors will not be detected because their α-particles are too energetic. The detectors were left in each station for approximately four weekslong enough for the 222Rn to reach equilibrium with its long-lived parent, radium and for a significant number of tracks resulting from its alpha decay to be registered on the CR-39 detector.
After exposure, the detectors were retrieved and etched for 8 hours in 6.25 N NaOH solutions at 70 ± 1°C in the laboratory. Subsequently the detectors were thoroughly scanned using an optical microscope at a magnification of 400X to count the number of alpha tracks per cm2 registered on the plastic detectors. The radon gas concentration (pCi/l) was determined using the relation.
(1)
Where (P) is the corrected track density (number of tracks per cm2), (K) is the calibration factor ((tracks. Cm2.d-1). (pCi/l)-1) and (t) is the total time of exposure. The radon concentrations in KBq.m-3 were calculated by using the relation:
(2)
Results and Discussions
The allover numbers of the measured stations were classified into three main zones according to the measured Rn- Gas concentration, Table 1 shows the station numbers that belongs to each zone, while Table 2 shows the lithology of each station.
First for the low level zone
Table 3 is shown that, they obtained ratios are nearly the same for the upper two depths (25 and 50 cm) with slightly higher measurements in summer than winter time reflecting the effects of the meteorological condition such as pressure and air temperature. Also the same behaviour can be noted for the lower two depths (75 and 100 cm) but with decreasing the ratio indicating a close readings between the two seasons which may reflect the effect of uranium content and the porosity and permeability of the hosting rocks in these depths.
Second for medium level zone
Table 4 is shown that, they obtained ratios are ranged from 1.219 to 1.572. The slightly great ratio at 100 depth (slight difference between summer and winter readings) may be due to water movements in the deep layers, again the ratio decrease while depth decreases reflects the effect of U-content, while the great ratio near the surface reflects the effect of aeration ore porosity near the surface.
Third for high level zone
From the Table 5 we can show that: the ratio is high and nearly constant while depths increases, and it is smaller in less depth, which may be indicates to the effect of porosity and permeability as well as uranium content in the depth sits, while another factor such as aeration must be introduced as an effective factor on the upper stations near the ground surfaces.
A systematic increase of soil radon concentration levels with depth is observed for all three zones (low-medium-high) and for both seasons. The observed variations with depth, for all three zones (low-mediumhigh), follow a similar pattern. Figures 4,6,8,10,12 and 14 shows the data points for the low level zone, the medium level zone and high level zone in both the summer and winter, respectively. They indicate that the variations of soil radon concentrations exhibit, at a first sight, a linear pattern.
At a depth of 100 cm, the highest values for soil radon concentration in summer and winter are observed in station (9) (32.831 ± 0.410 and 27.156 ± 0.389 (K Bq/m3) as shown in Figure 11 and 13, respectively). At the same depth the corresponding lowest values are measured in station (14) (1.104 ± 0.086 (K Bq/m3) in summer as shown in Figure 3) and station (7) (0.676 ± 0.081 (K Bq/m3) in winter as shown in Figure 5). Intermediate values are observed for the other all station (Figure 7 and 9). According to radiometric measurements station (9) (Kaolinite and gibbsite bearing shale) in the studied region contains the highest content of uranium (89 ppm) and has the highest porosity which allows radon gas to migrate and diffuse easily. This would explain the higher radon concentration levels obtained for station (9) compared to the others.
It is to be noticed that the radon concentration at the depth 100 cm is almost twice the radon concentration at the depth 25 cm. This is due to the fact that moisture in these geological formations concentrates in the 20-30 cm below the surface, in addition to the effect of the atmospheric pressure which suppresses the diffusion of radon upward.
The measured soil radon concentration levels in winter were systematically lower than in summer and this is true for all the studied formations. This result reflects the changes in porosity, permeability and moisture content of the soil covering the geological formation between the two seasons. It shows, in particular, that moisture, which is more important in winter, dissolves radon gas and thus inhibits radon diffusion.
If we assume that the contribution of soil radon to indoor radon is of the order 100:1 [7] taken at a depth of 50 cm, then the corresponding expected indoor radon concentration levels for the low, medium and high level zone in Bq/m3 13, 25 and 142 in summer, respectively. In winter these figures become 8, 20 and 86, respectively.
Conclusion
From the above obtained results we can conclude that:
a. Great dependency of soil radon concentration levels on depth in all three level zones (low, medium and high level zone), this dependency may be referred to many factors such as: i) Characteristics of the soil that covering the studied formations, ii) The values of U-content for the host rock, iii) Properties of each of the rock formation.
b. Significant seasonal variations of soil radon concentration levels were found between summer and winter seasons especially at low depths which indicate the effect of air movement on the ground surface.
c. The largest values of soil radon concentration obtained in the case station (9) seem to be due to the higher content in uranium in this formation.
d. Using the obtained results for summer and winter we can determine the radon exhalation rates and the radon concentration at the surface of the soil covering each geological formation, which is very important because it contributes to a greater extent to the indoor radon concentration levels which is considered to be a health hazard. The obtained values of indoor radon concentration levels derived from our results, for both seasons, are below the standard action level (4 pCi/L=148 Bqm-3) [8].
References

Tables and Figures at a glance

 

Table icon Table icon Table icon Table icon Table icon
Table 1 Table 2 Table 3 Table 4 Table 5

 

Figures at a glance

 

Figure Figure Figure Figure Figure
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

 

Figure Figure Figure Figure Figure
Figure 6 Figure 7 Figure 8 Figure 9 Figure 10

 

Figure Figure Figure Figure
Figure 11 Figure 12 Figure 13 Figure 14
Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Recommended Conferences

Article Usage

  • Total views: 12027
  • [From(publication date):
    October-2013 - May 23, 2018]
  • Breakdown by view type
  • HTML page views : 8193
  • PDF downloads : 3834
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7