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Introduction
The drugs used in conventional chemotherapy targets both 

cancerous cells and non-cancerous cells. This makes the treatment 
of the cancer cells highly ineffective due to excessive toxicities [1]. 
Various attempts have been made to combat tumors specifically to 
spare non-cancerous cells [2]. But, cancer cells develop resistance to the 
conventional chemotherapeutics and the newer molecular approach 
thereby evading the cytotoxicity [3]. Due to several advantages, 
nanomedicines can be a promising approach for an effective and specific 
chemotherapy. Firstly, due to high surface to volume ratio, nanoscale 
carriers reduce the distribution volume of the drug [4,5], therefore 
improving the pharmacokinetics and the biodistribution of the drug to 
specific organs [6-9]. Secondly, specificity imposed to the nanocarriers 

Abstract
The use of nanotechnology in delivering the chemotherapeutics drug has gained much attention recently. It 

is capable of killing the cancer much more effectively than any other method. The drug delivery systems using 
nanocarrier significantly enhances the efficacy of drug by improving the pharmacokinetics and the distribution of 
the drug to specific organs. For designing an effective nanocarrier, an insight of size, shape, surface chemistry 
and geometry is important. This review gives a map of guidelines for design of nanoparticle based chemotherapy. 
It reviews the mechanism of delivery in different pathways, physiology and chemistries involved and barriers to 
transport and delivery of nanocarrier based drugs, specifically for chemotherapeutic drugs. The microenvironment 
and physiology of a tumor site and its chemical environment is also reviewed, focusing on the impact on delivery. 
This review is an attempt to map the parameters that will help effective design of nanoparticles as drug carriers for 
chemotherapeutics. It discusses the accurate designing of nanocarriers as well as the effect of the environment to 
which a nanocarrier is exposed inside the body, its fate and uptake.

lowers the cytotoxicity to healthy tissues [10]. Thirdly, easier delivery of 
hydrophobic drugs in parenteral mode [10-12]. Fourthly, the stability 
of several therapeutic drugs like peptides, hydrophobic compounds, 
etc. is found to increase using this delivery system [13-15]. Finally, safe 
nanocarriers due to biodegradable polymers due to lower side effects 
and better efficacy [16-18]. Figure 1 illustrates the different advantages 
offered by nanoparticles based drug delivery.

Scope of the Review
 To design an effective nanocarrier, it is important to understand the 

environment in which a nanocarrier will travel its fate and challenges 
at different steps. Nanocarriers can only designed correctly with 
enough information about delivery pathway. Different pathways offer 
different challenges to a naoncarrier. These challenges can be overcome 
by considering all important factors responsible to its movement, 
functionality, recognition, specificity, etc. This review assesses all of 
these routes and environments to which the carrier is exposed and 
the barriers in each of these pathways. Moreover, this review acts 
as a guidelines and a map for the basic and essential parameters for 
designing nanocarriers for cancer therapy. This review will discuss 
all important factors for an effective nanocarrier design and help 
engineering the the nanoparticles in a way to achieve maximum uptake, 
minimum clearance by reticulo-endothelial system (RES), maximum 
transport in tumors and controlled release of drugs to constitute an 
efficient drug delivery system.

Figure 1: Advantages of Nanoparticles mediated drug delivery.
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Drug Delivery Systems
Transdermal drug delivery system 

In this approach, the human skin is used as the primary route of 
administration of drugs into the bloodstream. Bioactive compounds are 
applied on to the skin to achieve therapeutic blood levels for treatment 
of diseases which are distant from the site of application. Human skin 
surface provides a surface area of approximately 2 m2 with 1/3rd of blood 
supply of the body. It is one of the most conventional approaches for 
several decades. Drugs administered through this technique have to 
pass all the skin barriers and enter into the systemic circulation, which 
can be achieved by two ways: 

i.	 Transcellular pathway, in which a drug passes through 
phospholipid membranes and the cytoplasm of the dead 
keratinocytes, which forms the outermost layer of epidermis 
(stratum corneum), 

ii.	 Intercellular pathway, where a drug finds its way within the 
small spaces between the cells of the skin. 

Despite being easiest mode of delivery, owing to convenience, 
absence of any complications (like those that affect delivery through 
gastrointestinal (GI) tract) and reduced side effects, this approach 
suffers from several disadvantages like local irritation, edema, low 
permeability of skin, uncontrolled release of drugs [18-21]. Barriers to 
transport of drugs through the skin limit the volume of drug that can be 
transported for successful administration of therapeutics. 

Parenteral drug delivery system 
Parenteral route of administration refers to injection, infusion or 

implantation of drug into the human or animal body. It can also be 
called as injectable drug delivery, which can be subcutaneous (SC/
SQ), intramuscular (IM) or intravascular (IV). Drugs with poor 
bioavailability and low therapeutic index can be delivered using this 
method. It has been reported that parenteral drug delivery market 
constitutes one of the largest segments and accounts for nearly 30% of 
the total market share. Immediate physiological response, improved 
bioavailability of drugs, the absence of GI tract complications (which 
includes drug-degradation), rapid and maximum absorption, flexibility 
are some of the major advantages for parenteral delivery system [22-
27]. Some major disadvantages are higher cost of manufacturing; 
invasive, aseptic conditions need to be followed. Trained healthcare 
professionals are required. These factors further add to the cost of this 
route for therapeutics delivery. In addition, there are other barriers. 
Drugs once injected cannot be removed from bloodstream. Patients 
feel pain or discomfort during injection, and this often results in 
poor patient compliance and acceptability especially if multiple daily 
injections required like in case of insulin, etc. [28,29]. 

Transmucosal drug delivery system 
Transmucosal routes of delivery involve drug administration 

through mucosal linings of nasal, rectal, vaginal, ocular, and oral cavity. 
Mucosal linings are highly vascularized, have rich blood supply and 
good permeability. It provides several advantages over injectables and 
enteric routes. The major advantages of using mucosal route are the 
bypassing of GI tract and first-pass metabolism in liver. Drugs which 
are absorbed enter directly into the bloodstream and hence reducing 
the GI tract complications [29]. Due to high accessibility, oral mucosa 
has also been found to be the most acceptable route of administration. 

The hurdles in therapeutics delivery using this route include high 
enzymatic environment of oral mucosa. The carrier / drug system 

needs to be permeable through barriers of oral mucosa. In some cases 
saliva (or other secretions) wash away the drug; there is a need for high 
mucoadhesion for effective delivery. 

Oral drug delivery system 

The oral route is considered to be the most widely accepted mode 
for drug delivery owing to the convenience, ease of administration 
and cost effectiveness [29,30]. This mode of administration of drug 
relies on the absorptive capacity of the gastrointestinal (GI) tract. The 
drug administered orally must overcome the acidic environment and 
enzymes present in GI tract. Hence, drug delivery vehicles are needed to 
increase the oral absorption, easy passage through intestinal membrane 
and avoid the destructive nature of GI tract [31]. This is accomplished 
with the use of nanotechnology which enables (i) the delivery of poorly 
water-soluble drugs, (ii) the targeting of drugs to the specific regions of 
the GI tract, (iii) transcytosis of drugs across the intestinal barriers, and 
(iv) intracellular delivery of drugs [32]. Use of nanomedicines is highly 
advantageous as apart from increasing the efficacy and tolerability 
of drug it provides wide range of nanosystems for oral drug delivery 
[33,34]. Nanocarriers ranging from polymeric nanoparticles, solid lipid 
nanoparticles, nanocrystals and self-nanoemulsifying systems have 
been applied for oral drug delivery [35]. 

Targeted drug delivery 

Targeted drug delivery is the ability to direct any therapeutic agent 
to desired site of action specifically, with little or no interaction with 
non-target cells/tissues. “Clever” delivery system includes the parallel 
behavior of three components: the targeting moiety, the carrier and 
the therapeutic drug. Drug-targeting can be an (i) active strategy, 
which is also referred as receptor-ligand or ligand based targeting or 
the (ii) passive or physical targeting, which introduces the drug carrier 
complex into the body that can avoid elimination from body’s defense 
mechanism, retains itself in circulation and reaches to the target site 
[36].

Reticuloendothelial system (RES) 

The reticuloendothelial system (RES) is a physiological system 
involves in the elimination of foreign macromolecules and particles 
from the body. It is a part of the immune system that includes 
macrophages and monocytes. Such cells have the ability to take up 
particles and dyes through phagocytosis, a process involving the 
engulfment of solid particles by the cell membrane (also known as “cell 
eating”). RES functions to remove the dead cells from the circulation 
and to introduce phagocytic cells for inflammatory and immune 
responses. Different forms of drug carriers like liposomes, emulsions, 
nanocomposition, bilayer structures when administered intravenously 
are found to be restricted by the organs of RES (liver, spleen, bone 
marrow) [37-39].

Tumor Microenvironment
A detailed study of the tumor microenvironment is necessary for 

designing the effective delivery technique for chemotherapeutic drugs. 
Cancer cells exhibit a different microenvironment in comparison 
with the normal cells, such as, vascular abnormalities, oxygenation, 
perfusion, pH and metabolic states. Hence a better understanding of 
the tumor vasculature and interstitium help researchers to develop 
different therapeutic strategies. Tumor cells exhibit abnormalities in 
blood vessels, lymphatic system, vascular barrier, interstitium. Due to 
angiogenesis, growth of new cells occur from pre-existing ones which 
leads to highly dilated with wide interendothelial junctions, large 
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number of fenestrations and transendothelial channels formed by 
vesicles, thick basement membrane, and leaky vessel walls with high 
permeability [40-44]. This abnormal growth helps tumors obtain extra 
oxygen and nutrients necessary for their growth and proliferation. All 
these abnormalities help molecules to transit across tumor vessels by 
phenomena called as enhanced permeation and retention effect (EPR) 
(Figure 2).

Drug Nanocarriers 
Drug carriers are vehicles for protected transport of drugs to 

affected sites and their controlled release in the body. Therefore, the 
size and shape of the particles as well as their surface functionality 
should be manipulated in such manner which facilitates their transport 
through barriers of different membranes and tissues as well as the 
protection of the encapsulated drug during transport. Nanocarrier 
based drug delivery strategies leverage multiple aspects of nanoparticle 
structures: (i) nanomaterials provides large surface to volume ratio in 

comparison to other conventional drug vectors hence imparts them 
with properties like specificity, selectivity, versatility, etc.(ii) nanosize 
allows transportation of drugs through cells and membranes, and (iii) 
nanosize enables drugs to avoid RES. Dendrimers, polymeric micelles, 
polymeric nanoparticles, viral nanoparticles, liposomes are some 
the nanocarriers which have been used in the past for studying their 
applications in the field of cancer drug delivery.

Design Parameters for Nanocarriers 
It is important to understand the interactions between the 

nanostructure and a biological membrane, before designing a 
nanocarrier. Past studies focussed on developing novel nanomaterials 
but the designing properties like nanostructures, size, shape, and 
surface chemistry did not get much attention For example, in delivery 
of any cancer drug to tumors, size, shape, surface charges and chemistry 
of nanocarrier influences delivery efficiency, and drug distribution. 
This insight can be used to redesign the nanomaterials accordingly so 
that large fraction of nanocarriers can penetrate and accumulate inside 
tumors. Moreover, it has been recently reported by Albanese et al. that 
even the interactions between the ligands on nanoparticles surface 
and the receptors present on the cell surface are also dependent on the 
engineered geometry of nanoparticle. Therefore, there are certain points 
(Figure 3) which should be kept in consideration while engineering the 
nanocarrier. Such as:

•	 It should escape clearance mechanism.

•	 It should be in circulation.

•	 It should escape opsonization.

•	 It should overcome drug resistance.

•	 It should have appropriate charge to adhere to the cell 
membrane.

•	 It should have proper ligands to bind with the receptors.

•	 It should be in a size small enough to escape phagocytosis and 
large enough to escape translocation in tissues and organs.

Surface charge

Nanoparticle properties for therapeutic applications are governed by 
several factors such size and shape, surface charge of the nanoparticles. 
One of the most important properties of nanoparticle to be controlled 
in the nanoparticle design is the cytotoxicity of nanoparticle. Charge 
density and charge polarity plays a major role in the cytotoxic action of 
a nanoparticle. Studies have shown that charged nanoparticles are more 
cytotoxic than neutral charged nanoparticles [44]. Among charged 
nanoparticles, positive forms are more cytotoxic than negatively charged 
nanoparticles [45-47]. The toxicity of poly (amidoamine) (PAMAM) 
dendrimers increases with an increase in number of amine groups [48]. 
However some nanoparticles such as SiO2 particles, porosity is a more 
important property than surface charge [49]. 

Cellular uptake of nanoparticle is also influenced by charge density. 
Cellular uptake involves electrostatic interactions between positively 
charged nanoparticle and membrane which favors its adhesion onto 
surface of cell. [50] On the other hand, even small but positively 
charged nanoparticle (2 nm) can alter the cell membrane potential as 
well as inhibits its proliferation and induces fluidity of the membrane 
[51]. Studies have shown that the uptake of charged polystyrene and 
iron oxide particles are better than their uncharged variants [52,53]. 
Cationic nanoparticles such as super paramagnetic iron oxide particles, 
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Figure 2: Diagrammatic representation of abnormalities in tumor 
microenvironment assisting the entry of nanopartciles in tumors.

Figure 3: Flowchart for necessary information required while engineering the 
geometry of nanoparticle.
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lipid particles, poly (lactic acid), chitosan, gold and silver particles are 
taken up by the cells at a higher level than the anionic nanoparticles [54-
57]. However studies by Ryman-Rasmussen et al showed no difference 
in the uptake of cationic and anionic quantum dots [58] which was later 
contradicted by showing the difference of cellular uptake in positively 
charged and negatively charged quantum dots. High hydrophobicity of 
the negatively charged quantum dots attributed to its higher uptake by 
the cells than the positively charged and neutral quantum dots [59-70]. 

Nanoparticle shape and geometry

Apart from the various factors discussed, particle shape also 
contributes to the property of nanoparticles. Nanoparticle shape is a 
critical factor in drug delivery. There are several evidences that show 
the importance of particle shape on the release of drug. Studies have 
shown the controlled release of drugs is possible with the use of hemi-
spherical sized particle, but not if the size of the particle is in the 
millimeter range [71]. Non-spherical particles show different rates of 
degradation because of different areas of thickness [72]. Geng et al. 
[73] found a positive correlation between in vivo blood circulation of 
nanoparticle and length-width ratio of the nanoparticle. 

Transport of the nanoparticle will be greatly affected by the shape 
of the nanoparticle. Movement of the particle is dependent on the 
symmentry of the particle. Non-spherical particles may tumble when 
flowing through the organs such as liver and spleen or when the 
particles are encountered by the obstacles in the blood vessels [74].

Another factor governed by the particle shape is the targeting 
ability of the particle. Apart from the surface area of the particle, 
curvature, opsonin adsorption also affects the ligand targeting by the 
particle. Once the particles get attached to the contours of target plasma 
membrane, the protruding ends of particle are detached by the flow of 
blood. Thus, the protruding ends of the particle determine the longevity 
of the targeted attachment [75]. Particle shape not only determines 
the internalization of the targeted particles but also the transport and 
sorting of the particles once inside the cell [76]. 

Methods to fabricate non-spherical nanoparticle: Particle shape 
has not been investigated in detail particularly because of the limited 
methods available for the synthesis of non-spherical nanoparticle 
[75]. In recent years, several methods have been designed to fabricate 

the non-spherical nanoparticles, out of which the two main methods 
are: 1) synthesis of non-spherical nanoparticle from the beginning; 
2) Alterations in the spherical particles fabricated earlier into non-
spherical particle. Synthesis method involves the use of techniques such 
as lithography, microfluidics and photopolymerization [77,78].

The second method involves the manipulation of fabricated 
spherical particles into non-spherical particles. Studies have shown the 
formation of polystyrene sphere particles because of the self-assembled 
polystyrene spheres on the surface of a droplet [79]. Inspite of the 
advantages of the methods of fabrication of non-spherical nanoparticle, 
there are some limitations also. The most important limitation is the 
shape produced in the methods. For example, microfluidic methods 
generate two dimensional shapes and microchannel geometry is one of 
the limitations of this method [77] (Figure 4). 

Surface chemistry and modification

Surface chemistry dictates the fate of a nanoparticle during 
clearance or uptake in circulation. It is essential for nanoparticles to 
have long circulation half life and to escape from macrophages (Figure 
5). Therefore, residence time or circulation time is an important 
factor for effective designing of a nanocarrier. In cancer therapy, 
long circulation is required for passive targeting because EPR effect 
is observed in tumor vasculature after multiple passes [80-83]. But to 
achieve this, nanoparticles should be made such that drug degradation 
can be avoided. Therefore, surface modification is required to make the 
nanoparticle more effective in carrying the loaded drug to the targeted 
site. Nicholas et al. [84] reported that blood half-life of nanoparticles is 
dependent on the surface hydrophobicity of nanoparticles. Nanoparticle’s 
surface hydrophobicity determines the amount of proteins (opsonins) 
adsorbed on the surface. Particles which are more hydrophobic suffer 
more opsonization. Past studies have reported the PEG-ylation of 
the nanoparticles as hydrophilic blocks [83,85,86]. It increases the 
circulation time by escaping through immune cells (opsonisation). Past 
studies reported that PEG (Polyethylene glycol) prevents aggregation 
of the nanoparticles, helps in stabilising the nanoparticles, providing 
a neutral surface charge to nanoparticles, nanoparticles, escape from 
clearance by preventing from opsonins [87]. For effective modification 
of the surface, length and density of the PEG plays vital role [88,89]. 
PEG shields the inner core of nanoparticle from blood proteins by 
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Figure 4: Represents different important parameters for engineering the geometry of a nanocarrier. These parameters are reviewed in detail in next sections.
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forming a brush layer on the surface of nanoparticles. The access of 
encapsulated drug is restricted to the enzymes by modification of the 
nanoparticle surface therefore, improving pharmacokinetic profile and 
reducing non-specific toxicity [89-105].

Surface modification chemistry aims at specificity by targeting, 
ligand design, and is used in therapeutics, imaging reporter molecules 
[105-109]. 

Effect of size

Size of a particle influences the functionality of that particle like 
its uptake, residence in circulation, adherence, degradation as well as 
clearance [110-114] Size governs the movement of the nanoparticles 
inside the tissues. Figure 6 represents the effect of size on nanoparticles 
drug delivery. Champion et al. [75] reported that the movement of 
the particles inside tissues is dependent on the size as their movement 

can be sterically hindered in extra-cellular matrix. Based on the 
relationship between particle size and its curvature (for spheres), size 
of the nanoparticles along with surface chemistry, may also affect 
opsonization [115-121]. Recently, it was reported that [121] reported 
that size also play vital role in targeting nanoparticles accumulate inside 
the tumors by EPR effect, which in turn depends on the extravastion 
through the gaps in tumor vasculature. The ideal size range reviewed 
in past studies is 50-150 nm. However, a study reports that ultra-small 
gold nanoparticles of size range ≤ 10 nm exhibits uniform distribution 
inside tumor tissues due to their ability to diffuse through tissues [122]. 
Fang et al. [123] carried out a study with PEG-PHDCA nanoparticles 
of size range 80-240 nm for cellular uptake and it was reported that 
smaller nanoparticles shown better circulation and accumulation but 
uptake was poor.

Particle diameter and size can be controlled by varying different 

Figure 5: Methods for modification of  nanocarrier’s surface chemistry.

Figure 6: Influenec of size on nanoparticle mediated drug delivery.
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physical and chemical parameters. Dunne et al. [117] have shown the 
effect of particle size on the degradation. There is no direct relationship 
between the initial degradation rate and size of the nanoparticles 
and microparticles. The size and diameter of a particle guides its way 
inside a bloodstream, diffusion in cells or membranes, air-passage or 
gastro-intestinal tract [124]. Size is an important factor to decide the 
destination and fate of the nanoparticles inside the body. Illum et al. 
[115] and Tabata and Ikada [116] reported the fate of the particles 
inside body. Tables 1-5 shows the effect of size and their fate inside of 
body.

Designing shape and size specific nanocarriers: Previous 
researches over several decades focused on designing of nanocarriers 
by two major approaches-bottom-up synthesis and top-down approach. 
Designing liposomal carriers, micelles, polymeric nanospheres, drug 
encapsulated polymeric nanoparticles are some vehicle which fall 
under “bottom up” category. This approach is based on self assembly 
and emulsion systems. Major advancement has been made recently 
in fabrication technology by introducing “top-down” approach in 
micro and nano-fabrication system using electromechanical approach 
(MEMS & NEMS). They have exhibited the potential for designing 
nanoparticles with precision in particle shape and size. Such approach 
can provide control over particle size, functionality, particle geometry 
with accurate precision. This approach can also have ability to resolve 
the limitation of bottom-up approach. 

Bottom-up synthesis: This approach has been extensively studied 
in past and several types of potential nanocarriers have been developed 
using this method for example, polymeric nanoparticles, micelles, 
liposomes, nanoemulsions, dendrimers, biodegaradble and non-
biodegradable carriers, solid lipid nanoparticles, magnetic nanoparticles 
etc. Each of these carriers has been extensively reviewed by various 
researchers in last decade. Several invitro and invivo studies have been 

done and are still going on. Majority of these carriers are colloidal systems 
which are governed by different forces like hydrophobic interactions, 
vander-walls forces, hydrogen bonding, and ionic interactions. Often, 
high polydispersity have been exhibited by such system. Such systems 
sometimes undergo certain limitations. Invivo drug release profiles, 
physicochemical characteristics, degradation kinetics of these carriers 
are difficult to evaluate and reproduce as they are variable. 

Top-down synthesis: Recent advancements in designing of 
nanoparticles have been made by micro- and nanofabrication 
techniques [123,124]. Different nano imprint lithography processes fall 
under this category (Figure 7). Today, advance researches in the field of 
nanofabrication for drug delivery are going on using soft lithography 
[125], thermal embossing [126-129], step and flash lithography 
[129,130], and UV embossing [131-133]. This technique has already 
been explored by Shvartsman and Desai et al. [134-136] at micron 

Nanoparticle Charge Effects on Cell References
Carbon 

nanoparticles Cationic Forms holes in plasma 
membrane [62]

Quantum dots Zwitterionic
Increases the fluidity of plasma 
membrane and causes swelling 

of lysosomes
[63-64]

Dendrimers Cationic Forms holes in the plasma 
membrane [65]

Neutral Formation of lipid-dendrimer 
aggregates [66]

Silicon 
nanoparticles Cationic Permealisation of lysosomes [67]

TiO2 - Inhibits tubulin polymerization [68]

Cerium oxide Cationic Protein aggregation and 
fibrillation [69]

Aluminium oxide Zwitterionic Disruption of tight junction [70]

Table 1: Nanoparticle and cell interaction with different charged nanoparticles.

Coatings/
Modifications Advantages References

Polyethylene glycol 
(PEG)

Neutral, escape RES, long circulation, 
prevents degradation  [90-92]

Dextran Biocompatible and polar interactions  [93-95]

Chitosan Easier functionalization, easily available, 
biocompatible, cationic hydrophilic polymer  [96-97]

Polyethyleneimine 
(PEI)

Facilitates endosomal release by forming 
complex with DNA  [98-100]

Liposomal & 
Micellar coatings

Good encapsulation, sequestration and 
protection of drugs inside body [101]

Co-polymers Different functionalities of constituents [ 102-103] 

Table 2: Strategies for surface modification for nanoparticles.

Strategies in surface 
chemistry Details References

Nanoparticle conjugation

•	 Functional groups directly 
bonded to nanoparticle surface 
or,

•	 Facilitated by catalyst.

[104] 

Click chemistry

•	 Specific conjugation at desired 
location (due to azide & alkyne 
reactive groups)

•	 Useful where orientation & 
stability of moiety is important.

[105] 

Linker chemistry
Linker provides a control over 
molecular orientation and useful for 
controlled delivery systems

[106] 

Electrostatic interactions Cationic-anionic interactions [107] 

Hydrophilic/hydrophobic 
interactions

Nanoparticle’s surface engineered 
with hydrophobic surface which can 
adsorb hydrophobic drugs.

[106] 

Affinity interactions Surface modified with streptavidin for 
specific bioconjugation. [109]

Table 3: Different strategies reported for modification of surface chemistry of 
nanoparticle.

Size range Consequences References
≥2 μm Trapped inside liver cells 118,116

≥200nm Filtered in spleen 121

≤ 100nm Leave blood vessels through endothelial 
linings 116,122

≥300-400nm Captured by macrophages and excreted 
out. 116,119

≥ 3µm (for pulmonary 
administration)

Accumulate in upper airways, smaller 
exhaled out 120

Table 4: Size-based clearance mechanism.

Nanocarrier system Nanofabrication technique used References
Polymeric microparticles & 

nanoparticles Solvent –mold method 147

PEGDA nanoparticles S-FIL method 145
Protein particles PRINT 149

Iron-oxide nanoparticles PRINT 143

Polymeric nanoparticles Polymeric coating (PEG) reduces 
immunogenicity & escape RES 141-146

Solid-lipid nanoparticles

hydrophobic lipids that are solid
at room and body temperatures, 
surrounded by a monolayer of

phospholipids

148

Gold nanoparticles Real monitoring possible due to 
optical properties 

149

Table 5: Different types of nanocarrier developed using size specific strategies.
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scale explored for synthesizing biocapsules. Past studies have reported 
microfluidic devices for fabrication of shape specific microparticles 
[136-145]. In case of nanofabrication, nanoimprint lithography, step 
and flash imprint lithography (S-FIL), particle replication in non-
wetting templates (PRINT) have gained much attention [145-149].

Conclusion
This review explains the parameters necessary for nanocarrier 

design to combat tumors. This review specifically focuses on challenges 
in a perfect nanocarrier development. There are conflicting effects of 
size or surface functionality in transport through membranes, blood 
stream and cellular uptake, for example, and this leads to a design 
sweet spot that allows for efficacious delivery. It describes the role 
of various aspects of the nanoparticle in supporting and enhancing 
drug delivery. This review develops a map for design of nanoparticle 
based chemotherapeutic strategies by recognizing the mechanisms 
of transport in the delivery pathway of choice, the barriers to these 
transport mechanisms, and the role of structure, functionality and 
material of nanoparticles in inhibiting or supporting transport.
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