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Introduction
Type 1Diabetes (T1D) is characterized by chronic hyperglycaemia 

and the patient is therefore in need of insulin replacement therapy [1]. 
This is set on either a conventional or an intensive manner of treatment. 
Intensive insulin therapy (with 3 or more daily insulin injections) or 
continuous subcutaneous insulin infusion [2] is designed to achieve 
near-normal glucose control and minimizes the development and 
severity of diabetes associated complications. Because administration 
of exogenous insulin is required in both manners of insulin therapy, 
this can result in an alternation of hypoglycaemic and hyperglycaemic 
episodes [3]. Since glucose is the only energy for the brain, it is not 
inconceivable that the disruption of the glucose supply caused by 
hypoglycaemia and/or chronic hyperglycaemia might alter brain 
functioning. One example is the disturbance of the cognitive functions. 
Indeed, the effects of diabetes on the brain were already recognized by 
Miles and Roots in 1922 (cited in [4]). In 1965, Resko-Nielsen stated 
that the histological pattern observed in diabetes differs from that 
seen in any other clinical condition and therefore named it diabetic 
encephalopathy [5]. As different terms (e.g. cognitive dysfunction, 
cerebral impairment, central neuropathy) are used in literature, 
Mijnhout et al. [6] proposed a new term: ‘diabetes-associated cognitive 
decline’ (DACD), to include all terms and in that way facilitate research 
in this area [6]. This term is not suggestive of a particular pathogenesis, 
but merely describes a state of mild to moderate cognitive impairment 
[6]. 

The pathophysiological basis for a DACD remains poorly 
understood. In literature, episodes of hypoglycaemia [7,8], 
hyperglycaemia [9,10] and C-peptide/ insulin deficiencies [5,11-19] are 
mostly cited as harmful to the brain and would therefore be triggers for 
sustaining a DACD. 

Exercise has been accepted and generally recommended for the 
management of T1D. Exercise increases aerobic fitness, reduces 
cardiovascular risk factors, and decreases body weight and body fat 
[20]. Physical activity (PA) improves or maintains chronic glycaemic 
control, a key trigger for DACD, by enhancing insulin sensitivity and 
stimulating muscle glucose uptake [21]. Therefore, exercise could be 
a preventive tool for chronic hyperglycaemia and hence presumably 
also for a DACD. Moreover, PA, especially aerobic exercise, has been 
shown to exert positive effects on the cognitive function in humans 
[22,23]. A meta-analysis of Colcombe & Kramer [24] revealed a clear 
improvement in executive function due to exercise. Their meta-analysis 

showed that mental control, spatial memory tasks and psychomotor 
speed were also positively influenced by exercise compared to sedentary 
controls [24]. Although the role of exercise is clear, it is not that evident 
to discover which cognitive functions are altered in T1D, and which 
mechanisms are at the origin of the decreased cognitive function 
seen in T1D. Other specific questions that can be raised involve the 
importance of the different exercise intensities and durations on blood 
glucose levels, and the associated cognitive function in T1D patients. 
Therefore, in this paper we will review the existing literature on a 
DACD and the effects of exercise in T1D. Additionally, insights in the 
mechanisms through which a DACD is caused and how exercise could 
help will be suggested. 

Diabetes Associated Cognitive Decline
To give a clear view on the affected cognitive domains in T1D, a 

screening of the literature on the electronic databases Pubmed and 
ISI Web of Knowledge was performed. Fifty-five original studies were 
found investigating a DACD in T1D patients (32 including adults, 23 
including children). 

Compared with non-diabetic children (<18 years), T1D children 
showed significantly decreased performance on full Intelligence 
Quotient (IQ) and motor speed. No significant differences in cognitive 
function were found in verbal IQ, performance IQ, executive function, 
memory and motor function [26-42]. Adults on the other hand showed 
significantly lowered performance on the executive function, general 
IQ (full, verbal and performance IQ), spatial memory and motor 
speed[43-58]compared to non-diabetic adults.

Early onset disease (EOD) has been considered one of the 
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Abstract
Type 1 Diabetes (T1D) can have a significant impact on brain structure and function. This so-called ‘diabetes-

associated cognitive decline’ (DACD) can be attributed to diverse biochemical and neurochemical pathways which are 
caused by hyperglycaemia, hypoglycaemia, but also by c-peptide and insulin deficiency. Besides the positive effects 
of exercise on the acute and chronic glycaemic control in T1D patients, a growing number of studies also documented 
the beneficial influence of exercise on aspects of cognition and performance. Therefore, the purpose of the present 
narrative review is to discuss the associative aspects between a DACD and its’ proposed mechanisms and the potential 
beneficial effect of exercise on a DACD.
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most prominent risk factors for sustaining a DACD [29,35,37,59]. 
Independently of diabetes duration, T1D children with an EOD show 
a significantly greater DACD for the following domains: verbal IQ, 
memory and executive function, and a moderate significant DACD 
for spatial memory. No studies were found comparing the DACD of 
T1D adults with an EOD versus a late onset disease (LOD). In brain 
imaging studies, results from magnetic resonance imaging (MRI) scans 
showed that an EOD was associated with higher rates of ventricular 
atrophy (61 vs. 20%) and higher rates of white matter lesions within 
the hippocampus (14 vs. 2%) [60]. According to Ryan [60], brain 
volume correlates witha performance on cognitive tasks, providing 
strong support for the view that an EOD may affect normal brain 
development, and this leads to a DACD [60]. 

Intensive insulin therapy (with 3 or more daily insulin injections) 
or continuous subcutaneous insulin infusion [2] is designed to 
achieve near-normal glucose control, but also increases the risk of 
hypoglycaemic episodes. Four studies in adults [2,61-63] and 3 studies 
in children [33,64,65] looked at the effects of different insulin therapies 
on cognitive function but did not find significant differences in any of 
the cognitive domains using different forms of medical management 
(either a conventional or an intensive manner of treatment). 

Only two studies suggest that patients suffering from diabetic 
complications (retinopathy) performed significantly worse than 
controls (without diabetes) and T1D subjects without complications, 
especially on tasks that required sustained attention [44,66], spatial 
memory [44], hand-eye coordination [44], fluid intelligence [66], 
information processing [66] and concentration ability [66]. This might 
suggest that the brain can be affected through the same pathways 
as other diabetes associated complications, such as retinopathy, 
nephropathy, neuropathy and macrovascular complications. 

Mechanisms of a Diabetes Associated Cognitive Decline
Literature describes 3 possible causes of a DACD: hypoglycaemic 

episodes, chronic hyperglycaemia and C-peptide/ insulin deficiencies 
(Figure 1).

Hypoglycaemia

The controversy still exists whether a DACD in T1D can be caused 
by hypoglycaemic episodes [12,53]. When blood glucose levels reach 
between 3.6-3.8 mmol/L, the release of counter-regulatory hormones 
(glucagon, adrenaline) starts. Blood glucose levels of 2.9-3.2 mmol/L 
provide autonomic and neuroglycopenic symptoms, while cognitive 
dysfunction starts at blood glucose levels of <2.9 mmol/L [67]. However, 
during brain imaging studies, hypoglycaemic-associated changes were 
only seen when plasma glucose was lowered to 2.5 mmol/L [53] or 2.3 
mmol/L [68]. This might demonstrate the importance of episodes of 
severe hypoglycaemia. 

In children differences in general IQ, memory (and spatial memory), 
executive function, motor function and motor speed in relation to a 
history of severe hypoglycaemic episodes were detected [26,28-31,69-
71]. In adults, the executive function and memory function were both 
significantly affected by severe hypoglycaemia [53,55,58,72-80]. 

On the other hand, moderate episodes of hypoglycaemia might 
play a protective role against severe hypoglycaemia damages. In an 
animal study [81], rats were subjected to either 3 consecutive days 
of recurrent moderate (1.4 – 2.2 mmol/L) hypoglycaemia or saline 
injections. On the fourth day, rats were subjected to a hyperinsulinemic 
severe hypoglycaemic (0.6 mmol/L) clamp for 60 or 90 min. In this 
study, antecedent recurrent moderate hypoglycaemia preconditioned 

the brain and markedly limited the extent of severe hypoglycaemia-
induced neuronal damage and associated cognitive impairment [81].

The findings of the study of Auer et al. [7] suggests that despite the 
existence of an energy deficit during hypoglycaemia, there still might 
be a period which is resistant to hypoglycaemia-induced damage. The 
possibility exists that the brain uses alternative non-glucose fuels such 
as amino acids and ketone bodies, in order to maintain the cellular 
energy state for a limited period [82]. In a rat study, irreversible brain 
damage occurred only after a period of at least one hour of flat electro-
encephalogram (EEG), which might indicate that these alternative 
energy sources could act as a protective mechanism for brain damage. 

Single episodes of (severe) hypoglycaemia might not be harmful 
since cognitive test performance returns to prehypoglycaemic baseline 
levels following restoration of the euglycaemic state [30,32]. Two studies 
[30,32] show results in terms of number of hypoglycaemic episodes. 
They found a significant correlation between severe hypoglycaemia 
frequency (3 or more compared with 1 or 2 episodes) and a delay on 
spatial memory and timing in T1D children [30,32]. 

How would hypoglycaemia be harmful for the brain?: 
Hypoglycaemia might cause neuronal necrosis through a 
neurochemical and biochemical pathway. At the neurochemical 
level, low blood glucose levels will alter ion pump activity and disturb 
cellular homeostasis [7,8,83] which will cause an influx of calcium into 
the cells, creating an intracellular alkalosis. Increasing intracellular 
calcium is also thought to activate a number of proteolytic enzymes, 
which action may lead to mitochondrial damage and eventually cell 
death [7,8,83]. On the other hand, the decreased flux of glucose to 
the brain results in a fourfold increase in amino acid concentrations 
(mostly aspartate) [7], thereby activating neuronal necrosis [8]. In the 
biochemical pathway, the cell catabolizes proteins and deaminates 
amino acids which cause increased ammonia production. Ammonium, 
which is a strong base, powerfully increases the cellular pH, resulting in 
an intense tissue alkalosis. Another reason for alkalosis might be lactate 
deficiency. Lactate tends to pull the tissue pH towards its own pKa (pKa 
of 3.83) [7]. However, due to a reduced production of lactate during 
hypoglycaemia, it is impossible to lower tissue pH which may reinforce 
alkalosis [7]. This alkalosis might explain why selective neuronal 
necrosis occurs during hypoglycaemia [7]. 

Alterations in cerebral vasoreactivity to hypoglycaemia and 
microvascular complications in T1D: Functional alterations in the 
cerebral vascular system – such as alterations in cerebral blood flow 
(CBF) have been associated with hypoglycaemic events in T1D. For 

Figure 1: Mechanisms of a DACD.
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example, more severe hypoglycaemia was found to be significantly 
associated with a more pronounced decrease in brain volume and a 
decreased CBF [84]. According to Wessels et al. [85] vasoreactivity is 
an important compensatory mechanism in general, especially during 
hypoglycaemia. It is known that structural microvascular abnormalities 
include thickening of capillary basement membranes and cause reduced 
capillary density in diabetes [86], leading to decreased vasoreactivity. 

A good vasoreactive response to hypoglycaemia is important in 
order to limit neuronal damage during hypoglycaemia [86]. Using 
MRI Wessels et al. [85] discovered that T1D patients with severe 
diabetic retinopathy (compared with patients without retinopathy) 
had decreased deactivation in the anterior cingulated gyrus and 
the orbitofrontal cortex during hypoglycaemia as compared with 
euglycaemia [85]. They attributed this to microvascular alterations 
causing regional abnormalities in the regulation of the CBF. In contrast, 
Tallroth et al. [87] found that CBF was increased when blood glucose 
levels were lower than 2.0 mmol/L and further increased until 15 min 
after normalization of blood glucose values. The increase in CBF was 
correlated with the rate of blood glucose decrease during initiation 
of hypoglycaemia. These results were supported by the studies of the 
research group of Macleod et al. [88,89].

Patients with microvascular complications are prone to thickening 
of the capillary basement membranes and a decreased number 
of capillaries, making them even more susceptible for alterations 
in cerebral vasoreactivity and subsequently have a bigger risk for 
sustaining a DACD. Consequently this can explain why patients 
suffering from diabetic complication(s) have a decreased performance 
at several cognitive domains compared to T1D subjects without 
complications [44,66] and patients with microvascular complications 
have a significant smaller white matter (WM) volume than diabetic 
controls without microvascular complications [66].

Hyperglycaemia

Chronic hyperglycaemia (or poor glycaemic control) is another 
possible cause of a DACD. Poor glycaemic control was found to have 
negative effects on the memory function of T1D children [27,64,65] and 
adults [2,72]. T1D patients with higher levels of glycated haemoglobin 
(HbA1c) perform worse on motor speed and psychomotor efficiency 
[90]. It was shown by fMRI that higher levels of HbA1c are associated 
with lower activation in the right para-hippocampalgyrus and 
amygdala, while lower HbA1clevels resulted in hyperactivation of the 
brain [91]. 

How would hyperglycaemia be harmful for the brain?: There 
are several possible pathways to explain the interaction between high 
glucose levels and DACD. Hyperglycaemia causes oxidative stress via 
the polyol pathway, enhances the production of advanced glycation 
end products (AGEs), and increases vascular tone and permeability of 
the endothelial cell monolayer. 

In the polyol pathway, the excess amount of glucose is converted to 
sorbitol, which oxidizes NADPH to NADP+ [9]. An increase in sorbitol 
has been linked to alterations in phosphoinositide and diacylglycerol 
metabolism. This, in combination with alterations in Ca2+, affects the 
protein kinases in the brain [9]. Sorbitol may also glycate nitrogens on 
proteins, called AGEs. The intermolecular collagen cross-linking caused 
by AGEs on extracellular matrix proteins and basement membrane 
components leads to diminished arterial and myocardial compliance 
and increased vascular stiffness [10]. Additionally, AGEs increase 
proinflammatory mechanisms by the activation of the receptor of AGE 
(RAGE) in the vessels, resulting in amplification and perpetuation 

of a loop for oxidative stress and the disregulation of proinflamatory 
cytokines [92]. The key target of RAGE is nuclear factor κB (NF-
κB), both (RAGE and NF-κB) are up-regulated in the hippocampus 
of rats during hyperglycaemia. Up-regulation of RAGE and NF-κB 
is accompanied by an up-regulation of inflammatory factors such as 
TNF-α, IL-1β, IL-2, and IL-6 [18], consequently play a central role in 
the activation of inflammatory mechanisms [93]. These inflammatory 
factors can enhance oxidative stress and promote apoptotic stress [18].
This increase in oxidative stress leads also to AGE accumulation and 
creates thus an unremitting cycle [10]. Poor glycaemic control may 
thus lead to cellular and molecular damage and is therefore identified 
as a potential contributor to a DACD [93].

Increased oxidative stress is also associated with the activation of 
nitric oxide synthases (NOS) in the brain. Nitric Oxide (NO) has diverse 
biological activities including modulation of neurotransmission, 
promotion of synaptogenesis and synaptic remodelling, an involvement 
in long-term potentiation and depression, and is produced by 
the activity of NOS [94,95]. One of the negative effects is that the 
activation of NO causes ischemia, leading to neuronal apoptosis [94]. 
In ischemia, pro-inflammatory cytokines and leukocytes are activated 
[95].Restoration of blood flow to the ischemic area results in excessive 
production of reactive oxygen species (ROS) [95], what can result in 
significant damage to cell structures and even cell apoptosis. Therefore, 
we can assume that hyperglycaemia can induce, through different 
pathways, a DACD. 

C-peptide and insulin deficiencies

C-peptide is a product of pro insulin cleavage, generated in 
pancreatic beta-cells as a part of normal insulin production. It is 
released into the bloodstream in equivalent amounts as insulin in 
response to various stimuli including elevated blood glucose. In patients 
with T1D, both insulin and C-peptide are decreased or absent. Insulin 
plays an important role in the regulation of brain metabolism and has 
a couple of neuroprotective effects such as preventing neuronal death 
during stroke and reducing neurological disability [96]. C-peptide 
has insulinomimetic effects by triggering the insulin receptor (IR) 
activity and increases glycogen synthesis and amino acid uptake, but 
has no glucose lowering effects [15]. In 4 months diabetic rats, there 
was a severe suppression of presynaptic synaptophysin and a marked 
decrease in presynaptic density. These deficits were fully prevented 
by the replacement of C-peptide [18]. Interestingly, Sima et al. [17] 
showed that c-peptide replacement prevented the up regulations of 
RAGE and NF-κB. Consequently, TNF-α as well as the pro- and anti-
inflammatory interleukins normalized in the hippocampus of diabetic 
BB/Wor rats [17].

The replacement of C-peptide also prevented the suppression 
of IGF-1, IGF receptor (IGF-IR), IR, NGF and NGF-Tra receptor in 
peripheral nerves of T1D animals. This resulted in the prevention of 
structural changes characterizing T1D polyneuropathy [18,19]. Li et al. 
[13] studied the possible preventive effects of C-peptide replacement 
on the early abnormalities in the expression of the IGF system in the 
central nervous system. C-peptide replaced animals showed a partial 
prevention of hippocampal neuronal loss which was associated with 
changes in apoptosis related proteins in the hippocampus [13]. These 
findings might suggest that IGF and insulin action provides anti-
apoptotic effects and are in line with earlier studies.

In summary, the data of several studies support the view that 
insulin/C peptide deficiency plays an important role in type 1 diabetes-
induced neuronal apoptosis [12]. 
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Exercise in T1D: Short Term Episodes of Hypoglycaemia, 
Long Term Prevention of Chronic Hyperglycaemia?

As described above, glycaemic control (prevention of episodes of 
hypoglycaemia and of chronic hyperglycaemia) is important in the 
prevention or treatment of a DACD. PA is generally recommended 
for its positive effects on glycaemic control, insulin sensitivity and 
stimulation of muscle glucose uptake [97,98]. Unfortunately, due 
to the complexity of regulating exogenous insulin in a physiologic 
manner during exercise, PA often results in episodes of hypoglycaemia 
or even episodes of hyperglycaemia shortly following or even long 
after completing exercise [99]. It is clear that the type of exercise will 
influence glycaemic control, possibly inducing or preventing periods of 
hyper- or hypoglycaemia.

While a large body of literature exists, full comparison across 
individual studies is largely qualitative and hampered by a wide 
range of study characteristics, which makes the interpretation of the 
current literature difficult. One also has to be aware that there is a 
large difference in acute exercise studies, where the effect of one single 
exercise bout on glycaemia is examined, and exercise training, in which 
a systematic exercise program is used. For the purpose of this article 
we defined acute exercise as ‘exercise’ while chronic exercise is defined 
as ‘training’. Therefore, questions remain concerning the exact effect 
of training on glycaemic control in T1D. Subsequently, a screening of 
the literature resulted in a selection of 32 studies that provide more 
uniform results concerning the effects of different types of exercise on 
acute and chronic glycaemic control in T1D [100] (Figure 2).

Changes in blood glucose levels after a single bout of exercise

Glycaemia during exercise can vary inter- as well as intra-
individually given that it depends on various factors such as exercise 
modality and intensity [101-103], nutritional status [104], time of 
insulin injection [105], or pre-exercise glycaemia level [106]. As 
expected, aerobic [97,107-111] and to a less important extent, acute 
high intensity exercise (HIE) [103,110,112-115] results in decreased 
levels of glucose in the T1D patient, which might cause an episode 
of hypoglycaemia during or after exercise. The effects of resistance 
training on acute glycaemia are currently unclear. Jimenez et al. [104] 
showed that insulin sensitivity remained unaffected after a single 
bout of resistance exercise, and therefore they suggest that resistance 
exercise may not cause as severe post-exercise hypoglycaemic episodes 
as aerobic exercise. 

The blood glucose-lowering effect of moderate intensity aerobic 
exercise can increase the risk of developing an episode of hypoglycaemia 
during and after exercise. Exercise can acutely affect blood glucose levels, 
but also influence glycaemia the morning after and exercise bout, this 
is caused by a persistent increase of peripheral insulin sensitivity and 
to the required repletion of muscle glycogen stores, in which hepatic 
glucose production is unable to match the peripheral uptake of glucose 
by muscle. Consequently, late onset of hypoglycaemia can occur 
regardless of appropriate insulin reduction [99,116]. MacDonald et al. 
[114] followed 300 patients with T1D prospectively over 2 years. Sixteen 
percent developed late-onset (6–15 hours after vigorous exercise) 
hypoglycaemia. Besides this, previous exercise and the occurrence of 
previous hypoglycaemic episodes or poor glycaemic control, can affect 
the hypoglycaemic counter-regulatory mechanisms during subsequent 
exercise, which may cause even more episodes of severe hypoglycaemia 
[117]. In well controlled T1D patients with adequate insulinization, 
acute high intensity exercise may cause a less severe decrease of 
glucose levels during and after exercise or even prevent an episode of 

hyperglycemia due to an increase in catecholamines and sympathetic 
nervous system activation of hepatic glucose production which exceeds 
the rate of glucose use [117]. 

One way to prevent these exercise induced hypoglycaemic events 
is the ingestion of carbohydrates (CHO). West et al. [111] studied 
whether the ingestion of 75 g of CHO 30 min or 120 min before a 45 
min running exercise (at 70% of their VO2max) could assure that blood 
levels stayed within acceptable ranges. They concluded that venous 
blood glucose levels decreased more when CHO was ingested 120 
min before exercise compared to 30 min before exercise. Another 
manner to prevent these exercise-associated hypoglycaemic events is 
by performing an acute bout of high intensity sprint at the end of your 
moderate exercise. Indeed, studies found a smaller fall of blood glucose 
levels (or even an increase) due to an acute bout of HIE compared to 
an acute bout of aerobic exercise. This reaction can be attributed to 
a greater increase in catecholamines and growth hormone and hence 
in glucose hepatic production observed during the repeated bouts of 
HIE during moderate exercise [110,118]. Despite the fact that glucose 
utilization was greater and occurred faster in HIE + moderate vs. 
moderate exercise alone, the decrease in plasma glucose was smaller 
due to a much greater glucose production during HIE + moderate 
exercise [103,119]. Most recently, Iscoe and Riddell [115] compared 
moderate exercise with a HIE form with equivalent mechanical load in 
T1D adults. They showed that HIE provided better protection against 
nocturnal hypoglycemia. Rabasa-Lhoret et al. [101] observed that 
blood glucose levels decreased more in moderate continuous and/or 
longer exercise (periods ranging from 30 to 60 min and from 25 to 
75% of VO2max) modes than in intense exercise forms. We could thus 
hypothesize that the use of high intensity bouts during a moderate 
form of exercise could successfully limit the risk of hypoglycaemia 
during and after exercise (Table 1). 

Changes in glycaemic control due to exercise training

Twelve studies [120-131] examined the effects of aerobic training 
on chronic glycaemic control in T1D patients. Aerobic training 
results in a small, though significant, decrease in levels of HbA1c [100]. 
Aerobic exercise is known to enhance insulin action 24h following 
[132] acute exercise. Therefore, it is recommended that exercise is 
performed frequently in order to maintain a constant increase in 
insulin sensitivity and thus improve HbA1c. Thus, training once a week 
might not be adequate to improve HbA1c levels. For example, Huttunen 
et al. [133] performed an exercise intervention of 45 minutes, 1 time 

Figure 2: Effects of different types of exercise on acute and chronic glucose 
levels.
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per week during 12 weeks and HbA1c levels were not affected by the 
intervention program. The duration of the training period is also 
an important influencing factor for decreasing HbA1c. HbA1c levels 
decreased significantly only in training studies that lasted for more than 
3 months. The frequency (times/week) of training will also influence 
the HbA1c levels [100]. Besides this, baseline glycaemic control is also 
an important predictor of HbA1c improvement due to training. HbA1c 
decreases significantly more in T1D individuals with poor glycaemic 
(> 8% HbA1c) control compared to individuals with good glycaemic 
control (<8% HbA1c) [100]. Lehman et al. [134] demonstrated only a 
slight decrease in HbA1c in well-controlled subjects who performed 
exercise training. This might suggest that exercise can be beneficial in 
order to improve glycaemic control particularly in poor-controlled 
T1D subjects. 

Only 2studies [122,135] reported data on the effects of resistance 
training on glycaemic control. Aerobic training and resistance 

training have different actions in the body and can therefore influence 
glycaemic control through different pathways. Since fat mass decreases 
after a period of aerobic training [136], the change in the amount of 
body fat contributes to the change in insulin resistance over time in 
T1D patients[133]. On the other hand, resistance training enhances 
insulin sensitivity [137]. A meta-analysis of 9 randomized controlled 
trials evaluated 372 subjects with type 2 diabetes (T2D) [138]. When 
compared to not exercising, progressive resistance training led to 
a small but statistically significant absolute reduction of 0.3% in 
HbA1c, indicating that resistance training is a reasonable option in 
the management of glycaemic control in diabetic subjects [139]. This 
could be the result of obtaining greater muscle mass. At rest, skeletal 
muscle consumes 54.4 kJ/kg (13.0 kcal/kg) per day, which is larger than 
adipose tissue at 18.8 kJ/kg (4.5 kcal/kg) [140]. A greater muscle mass 
would thus consume more glucose and therefore could affect glycaemic 
control.

Reference
No. of 
Subjects 
(males)

Age (ys)
Characteristics Intervention Outcome

HbA1c (%) Insulin 
doses/day

Heyman et al. 
2005 [107]

7 T1D (7)
7 CG

10.5 ± 0.3
10.3  0.3 7.7 ± 0.7 0.92 ± 0.2 

IU.kg-1.day-1

Evaluating aerobic fitness during an incremental 
maximal test and Aerobic power PWC170. [IA-
,DA-].  [PP]. Exercise ~ 2.25 h after insulin 
injection.

- T1D pre-pubertal boys 
showed a significant ↓ in blood glucose 
during exercise.

Tansey et al. 
2006 [108] 50 T1D (NA) 14.8 ± 1.7 7.8 ± 0.8 NA 1 x 75 min aerobic training session, heart rate 

140 bpm. [IA+, DA +]. [PP].

- 30% of subjects became 
hypoglycaemic
- Blood glucose level significant 
↓

Heyman et al. 
2007 [97]

19 T1D (0)
19 CG

15.9 ± 0.3
16.6 ± 1.1 8.1 ± 0.3 68.3 ± 3.1 

IU.day-1

Maximal incremental exercise test on a bicycle 
ergometer. [IA-,DA-]. [PP]. Exercise ~ 2.25 h 
after insulin injection.

- T1D adolescents (girls) 
showed a significant  ↓ in blood glucose 
during exercise.

Poortmans et al. 
1986 [109]

17 T1D (17)
17 CG (17)

16.2 ± 0.7
16.6 ± 1.0

Good GC: 
7.3 ± 0.3
Poor GC:
11.4 ± 0.9 
Control:
6.3 ± 0.2

NA Maximal incremental exercise on bicycle 
ergometer. [IA-, DA-]. [PP]. 

- Blood glucose levels 
significant ↓ more in well-controlled T1D 
compared with poor controlled T1D.

Guelfi et al. 
2005 [110] 7 T1D (4) 21.6 ± 4 7.4 ± 1.5 14.8 ± 7.5 

IU.day-1
A 30-min session of moderate continuous 
training (40% of VO2max.). [IA -, DA-]. [PP].

- Capillary glucose level 
significant ↓

West et al. 2011 
[111] 7 T1D (7) 31 ± 2 8.3 ± 0.1 NA

Ingestion of 75 g CHO 30, 60, 90 and 120 min 
prior to a single session of 45 min of running 
exercise (70% of VO2max.). [IA+,DA+]. [PP]. 
Insulin injection 30, 60, 90 and 120 min prior to 
the exercise.

- 75g CHO 30 min before 
exercising decreases the incidence of 
hypoglycemic episodes and augments 
blood glucose levels after exercise 
compared to the ingestion of 75 g 60, 90 
or 120 minutes before exercise.

Yamanouchi et 
al. 2002 [25] 6 T1D (3) 42.7 ± 13.6 7.4 ± 0.9 27.2 ± 9.4 

IU.day-1

30 minutes of walking (< 50% of their VO2max) 
at a heart rate of 90-110 bpm, before or after 
breakfast. Subjects had 1 injection of regular 
insulin 30 min before breakfast: exercise after 
breakfast is performed while insulinaemia 
is high (peak of rapid insulin) whereas the 
exercise before breakfast is performed with low 
insulinaemia. [IA/DA+]. [FS and PP]. Exercise ~ 
1h after insulin injection.

- Blood glucose values 
significant ↓ when exercise is performed 
after breakfast, but not when exercise is 
performed before breakfast. 

Zinman et al. 
1977 [119] 16 T1D (10) 30 (22-43) NA NA

45 min at 50% of Vo2max. [IA infusion, DA NA] 2 
groups: 1 group continuous insulin infusion, 1 
group received one-third of usual intermediate 
acting insulin by subcutaneous injection. [FS]. 
Exercise ~ 1h after insulin injection.

- Rapid ↓ in glucose in subjects 
receiving one third of usual insulin. [P] 
glucose during exercise is constant in 
subjects with iv insulin infusion. 

Zinman et al. 
1984 [124] 13 T1D (7) 30.0 ± 1.8

10.7 ± 0.3 
 10.3 ± 
0.8

37.6 ± 3.2 
IU.day-1

A 45-min session of aerobic exercise (60-85% of 
their VO2max.). [IA-DA- (daily routines)]. [PAS, PP, 
FS = NA]. Exercise ~ 45 -135 min after insulin 
injection.

- Plasma glucose significant ↓

*Data presented as mean ± SD; N° of Subjects (males) = total number of subjects and the number between brackets are the number of males;
T1D: Type 1 Diabetes; GC: Glycaemic Control; NA: Not Applicable; CG: Controls; CHO: Carbohydrates; [VP]: Venous Plasma Glucose; [V]: Venous Whole blood, [P]: 
Plasma; [C]: Capillary; IA: Insulin Advice before/after Exercise; DA: Dietary Advice before/during or after Exercise; iv: intra-venous; ↓: Decrease; [PAS]: Post Absorptive 
State (5-11h after last meal); [PP]: Post Prandial (during 4h after meal); [FS]: Fasting State (> 12h after meal); HbA1c: Glycaeted Haemoglobin; VO2max: Maximal Oxygen 
Uptake; PWC: Physical Working Capacity

Table 1: Effects of a single bout of aerobic exercise on blood glucose levels in T1D patients (Table based on [100]).

file:///E:/Total_Files/All_Journals/OMICS/JDM/JDMVolume.2/JDM-S10/JDM-S10_AI/l 


Citation: Tonoli C, Heyman E, Roelands B, Buyse L, Piacentini MF, et al. (2013) Diabetes Associated Cognitive Decline, is there a Role for Exercise? 
J Diabetes Metab S10: 006. doi:10.4172/2155-6156.S10-006

Page 6 of 14

 J Diabetes Metab        Diabetes & Exercise           ISSN: 2155-6156 JDM, an open access journal

The effects of aerobic training combined with resistance training 
were determined in 4 studies [141-144] using an adolescent population.
There is still no consensus in literature on the combined effect of 
aerobic and resistance exercise. When comparing pre and post training 
status levels, there was only a slight decrease of HbA1c. However, the 
exercise group showed a significant decrease in HbA1c compared to the 
control T1D non-exercising group. A possible explanation is obviously 
the combination of both mechanisms of endurance and resistance 
training, as explained above [133,140]. The study of Heyman et al. 
[144] did not show a significant decrease of HbA1c levels, while the 
study of Bernardini et al. [142] showed a large, significant decrease in 
HbA1c. The contradictory results in literature might be partly explained 
by the types of interventions. For example, in the cross sectional study 
of Bernardini et al. [142], they defined ‘combined training’ as ‘soccer, 
volleyball, tennis, basketball’ across lifetime. Their improvement in 
glucose levels were probably not due to specific aerobic or resistance 
training programs, but due to the combined effects of different sports 
and their active lifestyle. In the study of Heyman et al. [144] adolescents 
only benefit from the training during the study period. This suggests 
that an active lifestyle (as measured in a cross sectional study) could 
reflect in good glycaemic control, whereas subjects with poor glycaemic 
control could be less motivated to engage in PA.

Only one training (7 weeks) study determined the effects of sprint 
training on glycaemic control [145]. The authors concluded that HbA1c 
levels were not influenced by long term High Intensity Training (HIT). 

From the above studies, the following guidelines can be for the 
maintenance of improved chronic glycaemic control formulated: 
training (mostly aerobic) 3 months or more, training at least 2 - 3 times 
a week and having dietary or insulin advice [100]. For example, West 
et al. [111] studied whether the ingestion of 75 g of CHO 30 min or 
120 min before a 45 min running exercise (70% of their VO2max) could 
assure that blood levels stayed within acceptable ranges. They found that 
venous blood glucose levels decreased more when CHO was ingested 
120 min before exercise compared to 30 min before exercise. Insulin 
levels on the other hand, should be adjusted in terms of intensity and 
duration of the exercise. 

The relative difficulty of improving HbA1c with exercise training 
(all the more when patients do not benefit from specific advice about 
diet & insulin adaptations) might be partly caused by the difficulty 
for the patients to manage various important glycaemic variations 
depending on a large amount of factors (duration since the last meal or 
insulin dose, insulin absorption, initial glycaemia, hour of the day…). 
It could be difficult to adapt insulin and diet to these important day-to-
day glycaemic variations, resulting in more hypoglycaemic episodes. 
In response, T1D individuals can consume more CHO or reduce too 
much their insulin dose that in turn can induce slight hyperglycaemia 
and prevent improvement in HbA1c (Table 2).

Exercising the Brain
In the last two decades, both epidemiological and experimental 

studies were published with accumulating evidence supporting a 
positive relationship between exercise and cognitive function. Results 
from meta-analysis confirm significant positive effects of exercise on 
cognitive function [146,147]. The most convincing evidence of exercise-
mediated brain changes has been found in the hippocampus (a part in 
the brain involved in memory forming, organizing, and storing) [148]. 
In fact, studies show that exercise improves mostly cognitive functions 
such as tasks mediated by the hippocampus [149].  

The exact mechanisms of the therapeutic effects of exercise remain 
unclear. Some hypotheses are suggested in literature to explain the 
possible therapeutic effects supporting the relationship between 
exercise and the brain, including supramolecular mechanisms 
(e.g. neurogenesis, synaptogenesis and angiogenesis) [150] and the 
neuroinflammatory processes [147].

Supramolecular mechanisms

Angiogenesis: Enhanced blood flow into the brain might be an 
effective approach to minimize or delay cognitive decline associated 
with aging [150]. Exercise enhances angiogenesis and vascular function 
in several regions, which might facilitate synaptic plasticity via 
multiple mechanisms [150-152]. These changes may lead to improved 
physiological functioning of the brain parenchyma [153]. For example, 
Insulin-Like Growth Factor (IGF-1) and Vascular Endothelial Growth 
Factor (VEGF), induce the formation of new blood vessels and are 
up-regulated after exercise [154]. Blockade of IGF-1 in the brain has 
also shown to prevent exercise-induced neuron proliferation in the 
dentategyrus [152]. Fabel et al. [155] showed that peripheral blockade 
of VEGF abolished running-induced neurogenesis but had no effect on 
baseline neurogenesis, suggesting VEGF is an important element of a 
somatic regulator of adult neurogenesis. 

Synaptogenesis: There is growing evidence that Brain-derived 
Neurotrophic Factor (BDNF; a member of the neurotrophin family) 
has a strong modulatory function in synaptic plasticity. Indeed, BDNF 
induces neurogenesis (directly or through neurotransmitters) and 
neuroplasticity (such as pre and post-synaptic cascades that induce 
synaptogenesis) [156]. This includes memory formation (learning 
and behaviour, synaptic plasticity, synaptic efficacy and neuronal 
connectivity),promotion of the development of immature neurons 
and enhancement of adult neurons survival [156]. Decreased levels of 
BDNF have been related to various mental disorders such as depression, 
schizophrenia, Alzheimer’s disease, dementia, Huntington’s disease, 
Parkinson disease [157] and T2D [158,159] and are associated with 
an age-related decline in hippocampal volume and elevated memory 
deficits [160]. 

There is a growing body of evidence that aerobic exercise training 
increases serum [161,162] and plasma [163,164] BDNF levels. However, 
a couple of studies did not find an increase in serum or plasma BDNF 
levels due to aerobic training [165,166] or strength training [166,167]. 
It seems that the effects of an endurance training program on (serum) 
BDNF levels differs from the effects of a single bout of endurance 
exercise on (serum) BDNF. In addition, Goekint et al. [167] cited that it 
is clear that an acute exercise bout will increase circulating BDNF levels, 
but that a longer training period not necessarily increases circulating 
BDNF concentrations. Furthermore, Ferris, et al. [168] reported that 
the magnitude of the increase in BDNF levels during exercise is related 
to exercise intensity. And thus, an increased release of BDNF into the 
blood circulation is a result of a physical stimulus in a dose-response 
manner [169]. It seems that only high intensity endurance exercises 
result into a significant increase of BDNF (Table 3).

Furthermore, exercise activates IGF-1 production, leading to 
angiogenesis (as described above) and presumably synaptogenesis 
through a downstream signalling cascade at the presynaptic and the 
postsynaptic level [150]. Ding et al. showed that blocking the IGF-I 
receptor significantly reversed an exercise-induced increase in the 
levels of BDNF mRNA, BDNF protein and pro-BDNF protein. This 
suggests that the effects of IGF-I may be partially accomplished by 
modulating the precursor to the mature BDNF. 
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Data are presented as mean ± SD; No. of Subjects (males) = total number of subjects and the number between brackets are the number of males;[P]FGL: Fasting Glucose 
Levels; EG:  Exercise Group; CG: Control Group; FU: Follow Up; T1D: Type 1 Diabetes; NA: Not Applicable; [VP]: Venous Plasma Glucose; [V]: Venous Whole blood; [P]: 
Plasma; [C]: Capillary; IA: Insulin Advice before/after Exercise; DA: Dietary Advice before/during or after Exercise; ↓: Decrease; [PAS]: Post Absorptive State (5-11h after 
last meal); [PP]: Post Prandial (during 4h after meal); [FS]: Fasting State (> 12h after meal); HbA1c:  Glycaeted Haemoglobin; VO2max: Maximal Oxygen Uptake; VO2peak: Peak 
Oxygen Uptake; HRmax:  Maximum Heart Rate

Table 2: Effects of aerobic training on glycaemic control in T1D patients.(Table based on [100]).

Reference
No. of 
Subjects 
(males)

Age 
(ys)

HbA1c (%) 
(pre/post)

Insulin doses/
day Intervention Outcome

Huttunen et al. 
1989 [130]

34 (20)
16 EG 
16 CG

11.9 
(8-17)

EG: 9.8 ± 
2.3 10.5 
± 2.5
CG 9.4 ± 2.1 
9.7 ± 2.2

NA

45 min, 1/wk, 12 wks, aerobic exercise, 
heart rate 150 bpm (jogging, running, 
gymnastics) vs. a non-training group. [IA/
DA NA]. [PAS, PP, FS = NA].

- Blood glucose and glucosuria did not change 
significant HbA1c levels ↑significant 

- VO2max (prepost exercise): 40.0 ± 7.2  43.8 ± 
8.6 ml.min-1.kg-1

Rowland et al. 
1985 [131] 14 T1D (7) 9-14 9.9 ± 1.4  

10.1 ± 1.1 NA 1h, 3/wk, 12 wk aerobic (running/walking) 
exercise. [DA+, IA-]. [PAS, PP, FS = NA].

- VO2max ↑sign (38.4 ± 4.6  41.9 ± 6.0 ml.min-1.
kg-1)

- HbA1c, fasting blood glucose and glucosuria 
(24h) did not change significant

Wong et al. 
2011 [176]

12 EG (4)
11 CG (2)

12.3 ± 
2.07

CG: 8.1 ± 1.1
EG: 8.2 ± 1.4 NA 12 wks, 3d/wk aerobic (40-60% VO2max), 

30 min. [IA/DA NA]. [PAS, PP, FS = NA].

-- 9 month FU  aerobic exercise group had 
lower HbA1c levels than self-directed group. 

-- No changes in VO2max.

Bernardini et al. 
2004 [142]

91 T1D 
(50)

14.8 ± 
2.7

< 60 min/wk:
8.9  ± 0.5
120 -360 min/
wk: 
8.3 ± 0.4
360-480 
min:wk:
8.0  ± 0.6

NA

Prospective cohort study: aerobic activity 
defined as: walking, cycling, skating and 
swimming during the last 6 months. [DA/
IA NA]. [PAS, PP, FS = NA].

-- Minutes of exercising is inversely correlated with 
HbA1c. (60 min significant with 120-360 min and 
360-480 min).

Marrero et al. 
1988 [125] 10 T1D (6)

13.3 
(12-
14)

Prepost : 
10.1 ± 1.9  
9.2 ± 2.2 

NA

Non-supervised aerobic home exercise 
protocol: 45 min, 3/wk, 12 wks (heart 
rate 160 bpm). [IA-, DA+]. [PAS, PP, FS 
= NA].

- HbA1c levels ↓ significant
- VO2max ↑significant (40.4 ± 8.8  44.9 ± 12.9 

ml.min-1.kg-1)

Michaliszyn et 
al. 2011 [126] 12 T1D 12-19 9.4 ± 1.8  

9.4 ± 2.0 NA
60 min, 5 day/wk, 16 wk (60-75% of their 
predicted peak heart rate) in a home 
based program. [IA/DA NA].

- HBA1c did not change significant No 
measurement of VO2max.

Ruzic et al. 
2007 [127]

20 T1D 
(NA)

12.8 
± 2.1 
(9-16)

Prepost: 8.3 
± 1.3  7.9 
± 1.4 

3.6 ± 0.6 IU.day-1

0.9 ± 0.2 IU.kg-1.
day-1

High volume, low intensity program  60 
min, <75% of HRmax, 2 x 5 days, 3x/day, 
exercise camp for children. [IA/DA-]. [PP]

-- HbA1c sign ↓ 10 days after camp, but significant 
↑ 2 months after training

-- Blood glucose values ↓ significant the last days 
of training session

-- No VO2max levels were shown.

Sideraviciute et 
al. 2006 [128] 19 T1D (0) 14-19 8.5 ± 0.4  

7.8 ± 0.3

Short term: 26.4 
± 1.8 IU.day-

1 25.0 ± 7.8 
IU.day-1

Long term swim (aerobic) training: 45 
min, 2/wk, 14 wks. [IA/DA NA]. [PAS, PP, 
FS = NA].

- HbA1c ↓ significant
- Daily short acting insulin dose ↓ significant after 

exercise program.
- No VO2max levels were shown.

Laaksonen et 
al. 1999 [120]

20 T1D 
(20)

32 ± 
5.7

prepost:  8.2  
± 1.1  8.0 
±1.0

CGEG:  8.5 
±  1.6  8.0 
± 1.0 

Prepost 
training: 0.7  ±  
0.2  0.7 ± 0.2 
IU.kg-1.day-1

CGEG:
0.7 ± 0.2  0.7 ± 
0.2 IU.kg-1.day-1

1 wk, 20-30 min, 50-60%  VO2peak 
gradually increased to 12-16 wks, 30-
60 min, 3-5/wk, 60-80% VO2peak aerobic 
training program. [IA/DA NA]. [PAS, PP, 
FS = NA].

- VO2max significant ↑in training group (43.4 ± 8.0 
 46.1 ± 6.6 ml.min-1.kg-1)

- HbA1c ↓ with training and compared to control 
group

Lehmann et al. 
1997 [121]

20 T1D 
(13)

33 ± 
7.7 
(22-
48)

7.6 ± 4.4  
7.5 ± 4.0

48.4 ±  15.1 
 40.4 ±   13 
IU.day-1

3 x /wk, min 45 min, 3 months of regular 
endurance exercise,. 50- 70 % VO2max. 
[IA/DA NA]. [PAS, PP, FS = NA].

- Total insulin (IU/day) ↓ significant
- HbA1c did not ↓ significant
- VO2max increased significant (2914 ± 924 3092 

± 905 ml/min).

Ramalho et al. 
2006 [122] 7 T1D (2) 19.8 ± 

5.1
8.7 ± 1.6  
9.8 ± 1.8

0.95 ± 0.3  0.79 
± 0.3 IU.kg-1.day-1

40 min run or walk, first 2 wks: 60-70% 
HRmax, 3-6th week= 70-80% HRmax, 
7-12thweeks= 70-90% HRmax, 3/wk, 12 
wks, aerobic training. [IA+, DA+]. [PAS, 
PP, FS = NA].

- No difference in lipid profile or fasting blood 
glucose before and after the exercise program, 
while the HbA1c increased.

- Self-monitored blood glucose levels, measured 
before and after each session, showed a 
significant ↓ post compared to pre exercise 
training.

Wallberg – 
Henrikson, 
1986 [123]

6 EG (NA)
7 CG (NA)

63 ± 2
35 ± 2

10.4 ± 1.5
10.6 ± 1.6

32 ± 2 IU.day-1

43 ± 5 IU.day-1

20 min of daily bicycle exercise during 
5 months vs. non training.  [IA/DA NA]. 
[PAS, PP, FS = NA].

- VO2max ↑significant (prepost training: 30.2 ±2.1 
 32.7 ± 2.1 ml.min-1.kg-1)

- HbA1c did not change significant after training

Zinman et al. 
1984 [124] 13 T1D 30.0 ± 

1.8

10.7 ± 0.3  
10.3 ± 0.8 37.6 ± 3.2 

IU.day-1

45 min aerobic exercise, 3/wk, 12 wks 
(60-85% of their VO2max). [IA-DA- (daily 
routines)]. Exercise ~ 45 -135 min after 
insulin injection.

- VO2max.increased sign (33.8 ± 1.7  40.0 ± 4.0 
ml.min-1.kg-1)

- [P] FGL and HbA1c did not significant change
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A post-mortem study saw decreased expression of IGF-I in the 
hippocampus, cerebellum, pons and basal ganglia in two patients 
with EOD. This finding was associated with severe neuronal loss 
in the hippocampus and frontal cortex [92]. Li et al. [5,170] studied 
the possible role of hyperglycaemia vs. impaired insulin action on 
hippocampal apoptosis and neuronal loss in T1D rats. They found a 
decreased neuronal density in the hippocampus and a greater neuronal 
loss in T1D rats. These changes were preceded and accompanied by a 
significant 63% down-regulation of the hippocampal IGF system. 

Neurogenesis: Many substances affect hippocampal neurogenesis. 
Increased cell genesis is associated with enhanced hippocampal 
synaptic plasticity and can be exercise-induced. The changes in 
synaptic plasticity occur in the same regions where neurogenesis 
was stimulated. This suggests that newborn cells play a functional 
role in neurogenesis due to exercise [147]. In particular, long-term 
potentiation -a physiological model of certain forms of learning and 
memory-is influenced by PA [147].

Neuroinflammatory processes

Another potential pathway through which the cognitive function 
may be influenced is the link between exercise and inflammation. 
For example, exercise increases the release of adrenaline, cortisol, 
growth hormone, and other factors that have immunomodulatory 
effects [171] and thus reduces the level of systemic inflammation. 
Furthermore, vigorous exercise leads to increased levels of pro-
inflammatory cytokines (IL-1, IL-10, IL-6 and tumor necrosis factor-α 
(TNF-α)) [172,173], but simultaneously cytokine inhibitors and anti-
inflammatory cytokines restrict the magnitude and duration of the 
inflammatory response to exercise [149]. The release of cytokines such 
as vascular VEGF and Il-6 are associated with angiogenesis and may 
therefore contribute to the beneficial effects of exercise (Table 4 and 5).

Diabetes-Associated Cognitive Decline, is there a Role 
for Exercise?

Recently, strategies to fight or prevent the development of cognitive 

Data are presented as mean ± SD; No. of Subjects (males) = total number of subjects and the number between brackets are the number of males;T1D: Type 1 Diabetes; 
[VP]: Venous Plasma; [C]: Capillary; FGL: Fasting Glycaemic Level; IA: Insulin Advice before/after Exercise; DA: Dietary Advice before/during or after Exercise; ↓: Decrease; 
[PAS]: Post Absorptive State (5-11h after last meal); [PP]: Post Prandial (during 4h after meal); [FS]: Fasting State (> 12h after meal); HbA1c : Glycaeted Haemoglobin

Table 3: Effects of strength training on blood glucose levels in T1D patients.(Table based on [100]).

Reference
N° of 
Subjects 
(males)

Age 
(ys)

Characteristics Intervention Outcome

HbA1c (%) Insulin doses/
day

Durak et al. 
1990 [135] 8 T1D (8) 31 ± 3.5 6.9 ± 1.4  

5.8 ± 0.9
46.2 ± 15  41.6 
± 16 IU.day-1

3 d/wk; 10 wks, 15 exercises (max 12 reps), 3-6 
sets, rest intervals : 30s-2min. [IA/DA NA]. [PAS, 
PP, FS = NA]. Exercise ~ 5h after insulin injection.

- HbA1c and glucose levels ↓ significant

Ramalho et al. 
2006 [122]

6 T1D (1) 20.8 ± 
4.7

8.2 ± 2.9 
7.6 ± 1.6

0.95 ± 0.3  
0.79 ± 0.28 
IU.day-1

3d/wk , 12 wks, 9 exercises (8-12 reps), 3 sets. 
[IA+, DA+]. 

-- No significant differences in parameters.
-- Self-monitored blood glucose levels, 

measured before and after each training 
session, show non- significant↑.

*Data presented as mean ± SD; N° of Subjects (males) = total number of subjects and the number between brackets are the number of males;[P]FGL = fasting glucose 
levels; EG = exercise group; CG = control Group; T1D = Type 1 Diabetes; NA = not applicable; [VP]: Venous Plasma Glucose; [V]: Venous Whole blood[P]: Plasma; [C]: 
Capillary; IA: Insulin Advice before/after Exercise; DA: Dietary Advice before/during or after Exercise; ↓: Decrease; [PAS]: Post Absorptive State (5-11h after last meal); 
[PP]: Post Prandial (during 4h after meal); [FS]: Fasting State (> 12h after meal); HbA1c:  Glycaeted Haemoglobin; VO2max: Maximal Oxygen Uptake; VO2peak: Peak Oxygen 
Uptake; HRpeak: Heart Rate Peak

Table 4: Effects of combined (aerobic and strength) training program on glycaemic control in T1D patients.(Table based on [100]).

Reference
No of 
Subjects 
(males) 

Age 
(ys) 

Characteristics Intervention Outcome

HbA1c (%) Insulin 
doses/day

Bernardini 
et al. 2004 
[142]

90 T1D 14.8 ± 
2.7

60 min exercise/
wk: 8.9  ± 0.5
Mixed: 7.4  ± 0.6

NA

Prospective cohort study: aerobic activity defined 
as: walking, cycling, skating and swimming. 
Mixed defined as: soccer, volley- ball, tennis, 
basketball. No intensity/quantity shown. [DA/IA 
NA]

- Significant lower HbA1c levels in children 
performing > 360 min (mixed training) of 
exercise compared to  children < 60 min/wk  
(aerobic training) 

D’Hooge et 
al. 2011 [141]

16 T1D 
(NA)
8 EG
8 CG

14.1 
(10-
18)

EG: 7.9 ± 1.3 
7.7 ± 1.2
CG: 8.7 ± 0.8 
8.7 ±  0.9

0.96  0.9  
IU.kg-1.day-1

20 wks, 2/wk, 70 min, aerobic and strength group. 
Aerobic part: 60-75% of HRpeak. Strength training: 
20 RM 12 RM,3 sets, 10 repetitions, 60 sec 
rest. [IA+, DA+]. [PAS, PP, FS = NA].

- EG: Capillary glucose significant ↓ after 
training, HbA1c not significant ↓

- EG: Daily insulin doses: significant ↓
- EG: VO2peak ↓ not significant (1478  1425 

(mL/min))

Heyman et al. 
2007 [144]

16 T1D 
(0)
9 = EG
7= CG

EG: 
15.9 ± 
0.5
CG: 
16.3 ± 
0.4

EG: 7.3 ± 0.9  
7.1 ± 0.8
CG: 8.5 ± 1.3  
8.2 ± 1.2

EG: 1.0 ± 0.1 
U.kg-1.day-1

CG: 1.1 ± 0.1  
U.kg-1.day-1

22 x 2h + 25x 1 h of training during 6 months of 
aerobic and strength training in adolescent girls. 
[IA-,DA-]. [PAS, PP, FS = NA]. 

-- Insulin dose per day ↓ exercise group
-- HbA1c ↓ not significant in EG compared with 

CG
-- [P]FGL were significant ↓ in EG compared 

with CG.
-- PWC170 was not significant↑ in watts/kg.

Mosher et al. 
1998 [142]

10 T1D 
(10)
11 CG 

17.2 ± 
1.2

Pre – Post EG : 
7.72 ±1.26  
6.76 ± 1.07
CG vs. EG: 4.47 
± 0.6 vs. 6.76 ± 
1.07

1.02  ± 0.12 
IU.kg-1.day-1

45 min, 3/wk; 12 wks. Aerobic circuit training + 
strength training. [IA-/DA NA]. [PAS, PP, FS = 
NA].

- HbA1c ↓ significant 
- FGL plasma was unchanged
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*Data presented as mean ± SD; No. of Subjects (males) = total number of subjects and the number between brackets are the number of males; MOD: Moderate Intensity 
Training; IHE/HIE: Intermittent High Intensity Exercise; NA: Not Applicable; IA: Insulin Advice before/after Exercise; DA: Dietary Advice before/during or after Exercise; 
T1D: Type 1 Diabetes; [VP]: Venous Plasma Glucose; [V]: Venous Whole blood; [P]: Plasma; [C]: Capillary; [IS]: Interstitial Glucose Levels; [M]: Free Muscle Glucose; 
↓: Decrease; [PAS]: Post Absorptive State (5-11h after last meal); [PP]: Post Prandial (during 4h after meal); [FS]: Fasting State (> 12h after meal); HbA1c:  Glycaeted 
Haemoglobin; VO2peak: Peak Oxygen Uptake

Table 5: Effects of HIE exercise and training on glycaemic control in T1D patients.(Table based on [100]).

Reference
No. of 
Subjects 
(males)

Age (ys)
Characteristics Intervention Outcome

HbA1c (%) Insulin doses/
day

Bussau et al. 
2006 [113] 7 T1D (7) 21 ± 3.5 7.4 ± 0.8 NA

40% VO2peak for 20 min on a cycle ergometer then 
immediately engaged in a maximal 10-s cycling 
sprint (sprint trial) or rested (control trial). [IA -, 
DA-]. [PP]. Exercise ~ 109 ± 10 min after insulin 
injection.

- Moderate intensity resulted in a 
significant fall in glycaemia in both 
trials (3.6 mmol/L for sprint training, 3.1 
mmol/L for moderate training).

Guelfi et al. 
2005 [110] 7 T1D (4) 21.6 ± 4 7.4 ± 1.5 14.8 ± 7.5 

IU.day-1

30 min continuous cycling exercise at 40% VO2peak, 
interspersed with 16x 4-s maximal sprint efforts 
[IA -, DA-] compared to 30min continuous cycling 
at 40% VO2peak. [PP]. Exercise ~ 3.5h after insulin 
injection. 

-- Glucose production = ↑ in MOD+HIE vs 
MOD

-- Glucose utilization = ↓ MOD vs MOD+HIE

Guelfi et al. 
2007 [103] 9 T1D (5) 22.6 ± 

5.7 7.7 ± 0.8 NA
30 min continuous cycling exercise at 40% VO2peak, 
interspersed with 16x 4-s maximal sprint efforts. 
[IA/DA: euglycaemic clamp]. [PP].

-- High-intensity bouts associated with 
MOD stimulate a more rapid and greater 
increment in endogenous glucose 
production during exercise than MOD 
alone

Iscoe et al. 
2006 [112] 5 T1D (4) 35.2 ± 

3.0 7.0 ± 0.2 38.8 ± 5.1 
IU.day-1

60 min exercise spinning class (high intensity). 
[IA-, DA-]. [PP]. -- Blood glucose levels ↓ significant

Iscoe & Riddell 
2011 [115] 11 T1D (5)

35.1 ± 
11.6 
(18-51)

7.8 ± 0.4 34 ± 5 IU.day-1

- 45 min of continuous moderate-intensity 
cycling exercise at 55% of their VO2peak (MOD) or 
continuous exercise at 50% of their VO2peak with 
the addition of 9x 15s bouts of 100% VO2peak, 
spaced 5 min apart (MOD + HIE). [IA+, DA+]. 
[PAS]. Exercise ~ 2h after insulin injection.

-- MOD and MOD+HIE causes similar 
reductions in glucose levels during 
activity

-- Addition of HIE is associated with 
less risk for late onset post-exercise 
hypoglycaemia.

Harmer et al. 
2008 [114] 7 T1D (5) 25 ±  4

8.6 ± 2.3 
8.1 ± 
1.6

52.4 ± 3.8 
IU.day-1  51.2 ± 
4.6 IU.day-1

7 weeks of sprint training, 3/wk: 4-10, 30s all out 
sprints, 3-4 min rest). [IA-, DA NA]. [PAS, PP, FS 
= NA].

-- Glucose levels ↑ significant (pre/post 
training). 

-- HbA1c levels were not significant 
influenced.

impairment have become more and more important. PA, such as aerobic 
exercise, has emerged as a promising low-cost treatment to slow down 
or even stop the cognitive decline because it supports brain plasticity, 
neurogenesis and angiogensisin different populations, both healthy 
and diseased [24,169,174]. To date no studies reported the effects of 
exercise on a DACD in subjects with T1D. However, as glycaemic 
control plays a central role in a DACD, we could hypothesise that, since 
exercise is linked to synaptic plasticity, neurogenesis and inflammatory 
and anti-inflammatory processes (in non-diabetic subjects so far),and 
improves glycaemic control in subjects with T1D,itcould prevent or 
‘slow down’ a DACD in T1D. Figure 3 gives an overview of the possible 
pathways and interactions of exercise in a DACD.

Hyperglycaemia is associated with neuroinflammation. Vigorous 
exercise leads to increased levels of pro-inflammatory cytokines (IL-
1, IL-10, IL-6 and tumor necrosis factor-α (TNF-α)) [172,173], but 
simultaneously cytokine inhibitors and anti-inflammatory cytokines 
restrict the magnitude and duration of the inflammatory response to 
exercise [149]. Vigorous exercise will lead to increased levels of VEGF 
and Il-6, which are associated with angiogenesis [149] and thus can 
influence cognitive function. 

PA seems to be a key intervention to trigger the glycaemic 
control improvement [100]. BDNF triggers the processes through 
which neurotrophins mediate energy metabolism and in turn neural 
plasticity [169,178,179]. BDNF levels are inversely associated with 
fasting plasma glucose and the output of BDNF is inhibited when 
blood glucose levels are elevated [158]. This suggests that BDNF not 
only reduces acute blood glucose concentrations but also ameliorates 
chronic glycaemic control [180], an important cause of a DACD. Until 

now, no study has looked into the relation between BDNF, exercise and 
T1D. A vast body of evidence suggests a strong link between circulating 
BDNF concentrations and cognitive decline [181,182]. Clearly, 
assumptions can be made that PA can influence the cognitive function 
in patients with T1D directly through neurogenesis, synaptogenesis 
and inflammatory responses of exercise, but also through the energy 
metabolism. Therefore, studies are needed to look at the relationship 
between PA and cognitive function in T1D. 

Another possible mechanism is through energy metabolism. PA 
and BDNF both trigger the glucose metabolism [158,183]. Previous 
animal studies focused on the effects of BDNF in diabetic (obese) 
animals and showed that a peripheral injection of BDNF exhibits 
hypoglycaemic effects by inducing a hypophagia and reducing plasma 
insulin levels [184-186]. This indicates that BDNF ameliorates insulin 
resistance [184,187,188], and therefore has anti-obesity and anti-
diabetic effects [186]. Tonra et al. [180] showed that BDNF significantly 
reduced blood glucose and HbA1c when it was administered once 
or twice a week to diabetic mice for three weeks as compared with 
controls. This suggests that BDNF not only reduces acute blood glucose 
concentrations but also ameliorates chronic glycaemic control [180], 
an important cause of a DACD. A relationship between BDNF and 
glucose metabolism is also shown in humans. T2D patients have lower 
levels of plasma BDNF (independently of obesity) compared to non-
diabetic subjects [158,159]. Krabbe and colleagues [158] showed that 
T2D is associated with lowered levels of plasma BDNF which are in 
their turn inversely associated with fasting plasma glucose and that 
the production of BDNF is inhibited when blood glucose levels are 
elevated [158]. In contrast, another study reported increased levels of 
serum BDNF in newly diagnosed patients with T2D [189]. We have to 
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mention that most of the circulating BDNF is stored in the platelets 
[190], consequently BDNF concentrations are higher in serum [191] 
than they are in plasma. 

Conclusions
An increasing number of studies (in children and adults) have 

been published on the central nervous system changes associated with 
T1D in which it was demonstrated that T1D has an effect on cognitive 
function. A DACD can be caused by episodes of severe hypoglycaemia 
(biochemical and neurochemical features), chronic hyperglycaemia 
(via the polyopol pathway and increased oxidative stress) and c-peptide 
deficiency.Exercise has been accepted and generally recommended for 
the management of T1D and have been shown to improve acute and 
chronic glycaemic control. The addition of brief bouts of high-intensity, 
sprint-type exercise to aerobic exercise can acutely minimize the risk of 
sustaining a hypoglycaemic episode. On the level of chronic glycaemic 
control; regular aerobic training is a favorable tool for the improvement 
ofthe glycaeted haemoglobin level of a patient with T1D.Since exercise 
is linked to synaptic plasticity, neurogenesis and inflammatory and 
anti-inflammatory processes, it could be a tool to prevent or ‘slow 
down’ a DACD in T1D. However, no studies have been performed to 
evaluate the effects of exercise on a DACD. Therefore, future research 
(cross-sectional, longitudinal and interventional studies) is needed for 
the evaluation of the effects of exercise and training on the cognitive 
function in T1D patients. 
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Figure 3: Hypothetical effects of exercise on the cognitive function in T1D. 
(BDNF = Brain- derived Neurotrophic Factor, IGF-1: Insulin like Growth 
Factor).
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