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Understanding the mechanism of engineered nanoparticle (ENP) 
uptake by cells is important for various biomedical applications 
including biosensors, imaging, intracellular drug and gene delivery, 
and toxicity studies [1-3]. This editorial presents a short summary 
and perspective on the cellular uptake of gold nanoparticles and the 
mechanisms that govern them. Gold Nanoparticles (GNPs) have been 
proposed for use in practically all biomedical applications because of 
the ease in synthesis, chemical stability, and their unique optical and 
electrical properties [4]. But, spontaneous penetration of functionalized 
cationic GNPs have shown cell membrane disruption and cytotoxicity, 
thus limiting their utility [5]. However, recent literature has shown 
that GNPs (5nm diameter with “special” surface chemistries or 
arrangements) protected by an amphiphilic monolayer can non-
disruptively penetrate the cell membrane to deliver drugs, nutrients 
or biosensors [6]. Even with endocytosis arrested, this penetration 
via an energy independent mechanism do not damage or rupture cell 
membrane [7]. The underlying mechanism of how GNPs can non-
disruptively penetrate cell membranes has largely been unknown 
[8]. Recently, Van Lehn et al. [9] demonstrated that the penetration 
process consists of multiple steps – (a) first the anionic, striped GNPs 
will fuse with the cell membrane in a non-disruptive transmembrane 
configuration, (b) then the GNPs may translocate into the cell interiors. 
This process is dependent among others on particle size, monolayer 
composition, and ligand morphology. 

GNP size is found to play a critical role in both the rate and extent 
of cell uptake. Chithrani et al. found that 50 nm transferrin-coated 
GNPs are taken up by mammalian cells at higher rates and extents 
compared to other sizes in the range of 10-100 nm [10]. Chithrani et 
al. [11] suggested “wrapping effect” based on free energy calculations 
and receptor diffusion kinetics as the basis for how fast and how many 
NPs are internalized in the cell. Various tools are available to image 
(using either light or electron microscopy) and quantify (elemental 
analysis) GNPs concentration inside the cell. Elemental detection 
techniques such as ICP coupled with Mass Spectroscopy (ICP-MS) is 
an excellent technique to analyze gold content both inside and outside 
(growth media) of the cells. In addition, because GNPs are electron-
dense, TEM techniques can be used to distinguish gold from other 
cellular components. Depending on the GNP size, type, cell receptors 
and cellular signaling cascades, various other pathways such as 
phagocytosis, micropinocytosis, and receptor-mediated endocytosis 
(RME) including caveolae-mediated, clathrin-mediated, and caveolae/
clathrin independent endocytosis have been proposed [12]. 

Many researchers have studied how different cells selectively respond 
to GNPs. For example, in one study, BHK21 and HepG2 cells showed 
no effect, while A549 cells underwent apoptosis due to accumulation 
of GNPs in periphery outside cell nucleus [13]. In another work, the 
mechanisms by which transferrin-coated GNPs entered three cell 
lines (STO, HeLa, and SNB19) varied [10]. Ultimately, to understand 
and predict the relationship between NP size and different cell line 
exocytosis, free energy mathematical models were developed [10].

As stated earlier, microscopic imaging can be used to study GNP 
internalization and accumulation in different parts inside the cell. 
It is important to consider cell internalization as a function of size, 
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incubation time, temperature, and surface functional group [14]. 
Elemental analysis using ICP OES have shown abundant internalization 
and nuclear localization of gold complexes. This nanoparticle 
internalization is largely governed by the adsorbed proteins and their 
relative orientation on the curved nanoscale surface. Depending on 
chemical faces, receptors can mediate different pathways for cell entry. 
Negatively charged GNPs are shown to adsorb serum proteins and 
enter cells via a complex endocytic pathway resulting in higher toxicity 
and immunological response [15]. GNP internalization can also be 
manipulated by changing the surface chemistry, polyelectrolytes and 
surfactants of varying charge. TEM studies have shown GNPs coated 
with quaternary amines (CTAB and PDAD-MAC) exhibit higher 
uptake, compared to molecules containing primary amine (PAH) [16]. 
Cho et al. [17] observed that surface functionalized groups have a 
stronger influence on cell uptake than its shape. In addition, GNPs have 
exhibited particle size dependent organ distribution after intravenous 
administrationin rats. ICP-MS studies indicate that 10nm GNPs are 
present in blood, liver, spleen, kidney, testis, thymus, heart, lung and 
brain, while 50-250 nm GNPs are detected only in blood,liver and 
spleen [18]. 

Although it seems that GNPs can be taken up by different types of 
cells, the evidence is disparate and the mechanisms of uptake are either 
not examined or in their infancy [9]. It also remains unclear whether 
GNPs taken up by cells exert a cytotoxic effect or not. Accurate and 
comprehensive physical and chemical characterization data becomes 
very important to describe both toxicity and the cellular uptake 
mechanism. Currently, a diverse assortment of nanomaterials and 
experimental conditions are available, with no reliable and reproducible 
methods, models and standardized engineered nanomaterials. In future, 
a more ordered and systematic approach (with computational and 
experimental methodology) is necessary to both assess the biological 
responses and to address fundamental mechanistic questions. 
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