OMICS GROUP

- OMICS Group International through its Open Access Initiative is committed to make genuine and reliable contributions to the scientific community. OMICS Group hosts over 400 leading-edge peer reviewed Open Access Journals and organizes over 300 International Conferences annually all over the world. OMICS Publishing Group journals have over 3 million readers and the fame and success of the same can be attributed to the strong editorial board which contains over 30000 eminent personalities that ensure a rapid, quality and quick review process. OMICS Group signed an agreement with more than 10000 International Societies to make healthcare information Open Access.
OMICS Journals are welcoming Submissions

- OMICS Group welcomes submissions that are original and technically so as to serve both the developing world and developed countries in the best possible way.

- OMICS Journals are poised in excellence by publishing high quality research. OMICS Group follows an Editorial Manager® System peer review process and boasts of a strong and active editorial board.

- Editors and reviewers are experts in their field and provide anonymous, unbiased and detailed reviews of all submissions.

- The journal gives the options of multiple language translations for all the articles and all archived articles are available in HTML, XML, PDF and audio formats. Also, all the published articles are archived in repositories and indexing services like DOAJ, CAS, Google Scholar, Scientific Commons, Index Copernicus, EBSCO, HINARI and GALE.

- For more details please visit our website: http://omicsonline.org/Submitmanuscript.php
Emission Mössbauer spectroscopy: novel applications for probing structural organisation of metalloenzyme active centres

Alexander A. KAMNEV

Laboratory of Biochemistry,
Institute of Biochemistry and Physiology of Plants and Microorganisms,
Russian Academy of Sciences,
Saratov, Russia
Test object:

• glutamine synthetase (GS; doped with 57Co$^{2+}$),

 a key enzyme of nitrogen metabolism in many organisms

 (isolated from *Azospirillum brasilense*, a plant-growth-promoting N$_2$-fixing rhizobacterium)

Methodology:

• 57Co emission Mössbauer spectroscopy

 (in rapidly frozen aqueous solutions)
Emission (^{57}Co) Mössbauer spectroscopic study of $^{57}\text{Co}^{2+}$-doped GS active centres

Sample with ^{57}Co (source of γ-radiation) \rightarrow γ-quanta \rightarrow Absorber of γ-radiation (with ^{57}Fe) vibrating with velocities up to ± 10 mm/s \rightarrow Detector (with PC-operated multichannel analyser)

Characterisation of bacterial GSs

One of two hexameric rings located face-to-face, with total 12 subunits
(D. Eisenberg e.a., 2000)

Location of one of the 12 active centres (between subunits)
Characterisation of bacterial GSs

Distance between the cation-binding sites:

\[n_1 \leftrightarrow 6 \text{ Å} \rightarrow n_2 \] (no bridging residues): the two sites are ‘spectroscopically independent’
Emission (^{57}Co) Mössbauer spectroscopic study of $^{57}\text{Co}^{2+}$-doped GS active centres

PREREQUISITES:

1. Possibility to remove strongly bound cations from the native enzyme

 (treatment with 5 mM EDTA \rightarrow reversible loss of activity)

2. Possibility to insert Co^{2+} into the active centres

 (addition of Co^{2+} \rightarrow regain of activity)

3. Specific $[^{57}\text{Co}^{2+}]:[\text{GS}]$ molar ratio ($12 \leq x \leq 24$)

 (to avoid multiple binding of $^{57}\text{Co}^{2+}$ beyond active centres)
57Co Emission Mössbauer Spectroscopy:

Probing the structure of cation-binding sites at the active centres

Macromolecule (side and top views)

Glutamine synthetase from *Azospirillum brasilense*

Active centre: 2 cations in sites 1 & 2

Spectrogram

Basic conclusions:

• EMS allows different cation-binding sites in 57Co-doped metalloproteins to be characterised.

• EMS data on 57Co$^{2+}$-doped bacterial glutamine synthetase (GS) reveal two different cation-binding sites at each GS active centre.

• Isostructural substitution of 57Co$^{2+}$ for other cations (e.g. for Zn$^{2+}$) expands the EMS applicability and importance.
Thank you