OMICS International welcomes submissions that are original and technically so as to serve both the developing world and developed countries in the best possible way. OMICS Journals are poised in excellence by publishing high quality research. OMICS International follows an Editorial Manager® System peer review process and boasts of a strong and active editorial board.

Editors and reviewers are experts in their field and provide anonymous, unbiased and detailed reviews of all submissions. The journal gives the options of multiple language translations for all the articles and all archived articles are available in HTML, XML, PDF and audio formats. Also, all the published articles are archived in repositories and indexing services like DOAJ, CAS, Google Scholar, Scientific Commons, Index Copernicus, EBSCO, HINARI and GALE.

For more details please visit our website: http://omicsonline.org/Submitmanuscript.p hp
Additional therapeutic options in Parkinson’s disease according to a neuronal network

Werner, F.-M.1, 2; Coveñas, R.2

1 Euro-Schulen Pößneck, Pößneck
2 Institute of Neuroscience of Castilla and León, Laboratory 14, University of Salamanca, Spain
Introduction: In Parkinson’s disease exists a dopaminergic cholinergic and GABAergic glutaminergic neurotransmitter imbalance in the extrapyramidal system. The development of neuronal networks in the basal ganglia, the thalamus and the cortex could contribute to derive additional pharmacological options.
Material/methods: The neuronal network can be described as follows: Dopaminergic neurons from the substantia nigra weakly activate other dopaminergic neurons in the caudate nucleus via D_1 and D_2 receptors. The D_1 dopaminergic neurons transmit a weak activating impulse to dynorphin neurons which inhibit substance P neurons via kappa receptors. The latter neurons transmit a weak postsynaptic excitatory impulse via NK_1 receptor to GABAergic neurons in the globus pallidus internus. D_2 dopaminergic neurons weakly activate GABAergic neurons in the globus pallidus externus, which inhibit glutaminergic neurons in the nucleus subthalamicus via $GABA_A$ receptors.
The latter neurons strongly inhibit via \textbf{NMDA} receptors dopaminergic neurons in the substantia nigra and transmit an activating impulse via \textbf{NMDA} receptors to GABAergic neurons in the globus pallidus internus. The GABAergic neurons in this nucleus inhibit glutaminergic neurons in the thalamus which transmit an activating impulse to glutaminergic neurons in the cortex. The cortical glutaminergic neurons can activate D_1 and D_2 dopaminergic neurons in the caudate nucleus via \textbf{NMDA} receptors and activate other glutaminergic neurons in the nucleus subthalamicus.
The GABAergic neurons in the globus pallidus internus weakly inhibit via GABA_A receptors muscarinic cholinergic and neurotensin neurons in the putamen. The muscarinic cholinergic and neurotensin neurons with a high activity transmit a strong activating impulse respectively via M_4 and NTS_1 receptors to glutaminergic neurons. The latter neurons strongly presynaptically inhibit dopaminergic neurons via NMDA receptors. Nicotinic cholinergic neurons activate dopaminergic neurons via ß_2 nACh receptors, and adenosine neurons activate via A_2A receptors glutaminergic neurons which strongly inhibit dopaminergic neurons via the subtype 5 of the metabotropic glutamate receptors. The D_2 dopaminergic neurons in the putamen are connected to other dopaminergic neurons in the caudate nucleus.
Werner, F.M.; Coveñas, R.

Results: In addition to L-dopa combined with a decarboxylase inhibitor, dopamine agonists, M$_4$ antagonists, NMDA antagonists and inhibitors of enzymes degrading dopamine, the following drugs can be administered according to the neuronal network:

- **Antagonists of the subtype 5** of the metabotropic glutamate receptors, e.g. m$_5$Glu receptor antagonists, which increase dopamine levels through a reduced presynaptic inhibition,
- **A$_{2A}$** adenosine antagonists, which reduce the presynaptic glutaminergic inhibition of dopaminergic neurons,
- **β2 nACh** agonists, which stimulate the β2 subreceptor of the nicotinic cholinergic receptors and activate dopaminergic neurons,
- **NTS$_1$** antagonists, which reduce the presynaptic glutaminergic inhibition of dopaminergic neurons.

Discussion: It can be concluded that it is important to examine such neuronal networks in order to coordinate a multimodal pharmacotherapy in Parkinson’s disease.
Cytology & Histology
Related Journals

- Journal of Cell Science & Therapy
- Journal of Stem Cell Research & Therapy
- Cellular & Molecular Biology
For upcoming Conference visit http://www.conferenceseries.com/