OMICS Group International through its Open Access Initiative is committed to make genuine and reliable contributions to the scientific community. OMICS Group hosts over 400 leading-edge peer reviewed Open Access Journals and organizes over 300 International Conferences annually all over the world. OMICS Publishing Group journals have over 3 million readers and the fame and success of the same can be attributed to the strong editorial board which contains over 30000 eminent personalities that ensure a rapid, quality and quick review process. OMICS Group signed an agreement with more than 1000 International Societies to make healthcare information Open Access.
OMICS Journals are welcoming Submissions

OMICS Group welcomes submissions that are original and technically so as to serve both the developing world and developed countries in the best possible way. OMICS Journals are poised in excellence by publishing high quality research. OMICS Group follows an Editorial Manager® System peer review process and boasts of a strong and active editorial board.

Editors and reviewers are experts in their field and provide anonymous, unbiased and detailed reviews of all submissions. The journal gives the options of multiple language translations for all the articles and all archived articles are available in HTML, XML, PDF and audio formats. Also, all the published articles are archived in repositories and indexing services like DOAJ, CAS, Google Scholar, Scientific Commons, Index Copernicus, EBSCO, HINARI and GALE.

For more details please visit our website: http://omicsonline.org/Submitmanuscript.php
Effective Learning with Multi-Media

In this presentation, learners will review eight principles of *Multi-Media Learning*

Created by Keith V. Bletzer, Editorial Board
Anthropology-Open Access Journal
Multi-Media Learning (2001)
Richard E Mayer proposes:

3 foundations (multi-media)
2 cognitive stressors
3 steps into memory
3 assumptions (cognition)
3 foundations (multi-media)

Intelligibility and Plausibility

‘Compatible’ and ‘Consistent’ with how people learn

Applicability fits with multi-media
2 cognitive stressors

Intrinsic Cognitive Load: inherent difficulty of material

Extraneous Cognitive Load: how the message is designed
3 steps into memory

Selecting: attends to relevant words and pictures, especially core items & main steps

Organizing: builds *internal* connections, creates coherent model (verbal or pictorial)

Integrating: builds *external* connections with coherent model *and* prior knowledge
3 assumptions (cognition)

Paired Channels
Visual and Auditory

Limited Working Memory
5 to 7 items, or 5 to 7 chunks (items)

Active Processing
Attend to input
Organize it -- Integrate it
This is more work...

Printed Text

Words (to Ears) → Sounds (to Verbal)

Eyes (to Images)

Selecting

Organizing

Prior Knowledge

Lesson

Sensory Memory

Working Memory

Long-Term Memory
Multi-Media Model

Paired Presentation

“Narration” & “Animation”
One Channel

Narration

Words → Ears → Sounds → Verbal

Pictures → Eyes → Images → Pictorial

Lesson → Sensory Memory → Working Memory → Long-Term Memory

selecting → organizing

Prior Knowledge
One Channel

Words → Ears → Sounds → Verbal

Animation

Pictures → Eyes → Images → Pictorial

selecting → organizing

Lesson → Sensory Memory → Working Memory → Long-Term Memory

Prior Knowledge
Multi-Media Model

Dual Channels

“auditory” and “visual”
This is less work...

- **Narration**
 - Words → Ears → Sounds → Verbal
 - Pictures → Eyes → Images → Pictorial

- **Selecting**
- **Organizing**

- Lesson
- Sensory Memory
- Working Memory
- Long-Term Memory

- Prior Knowledge
One learns better when words and picture appear near each other, than words alone

• Words and pictures together encourage verbal and pictorial mental models; assist making mental connections between them

• Narration = Words & Animation = Pictures
One learns better when related pictures & words are presented spatially near, not far, and not on top of visual words and pictures together are held in working memory; focus attention better; and reduce need “to search” page/screen.
One learns better when words and pictures are presented simultaneously, rather than successively.

Bits (chunks) of narration and animation are held in working memory more easily; encourage mental connections between verbal and visual representations.

Temporal Contiguity
One learns better when extraneous stuff is excluded, rather than included.

Extraneous stuff competes for energies in working memory; diverts focus from core idea & moves into inappropriate themes; disrupts organizing the material cognitively.

Coherence
Chunking is placing items in memory boxes for meaningful cognitive tasks. Each box contains chunks of information that help in retaining and processing data more efficiently.
Better
Chunking is bunching together for meaningful cognitive tasks.
IN THIS EXAMPLE
Coherence is increased through enhanced spatial proximity and enhanced temporal contiguity;
Animated text is used, no narration;
Extraneous text/animation is removed.
One learns better from animation and narration, than animation and on-screen text

• Words through auditory/verbal channel are more easily processed, which leaves open visual/pictorial channel (prevents “jumble”)
• More effective if spoken, than printed text
One learns better from animation and narration, than animation/narration with text

- Pictures & words together (animation/text) can sometimes overload the visual channel.
- More effective to teach thru two channels, that is, *Auditory* and *Visual*

Redundancy
Viceroy Butterfly (tastes good)
Monarch Butterfly (tastes bad)
Viceroy Monarch

Mimicry means “to copy” an appearance for self-protection. Think of yourself walking down the street of a strange neighborhood. If you “dress” like most the people around you, you will be “safer.”

Our lesson today is **Natural Selection**.
Better
Protective Coloration preserves “bad,” mimics “good”
IN THIS EXAMPLE
Coherence is increased through enhanced spatial proximity;
Extraneous text is removed;
Printed text is separated from visual, but could be replaced by brief narration;
No animation is used, would be extraneous.
Design effects are stronger for low-knowledge & high-spatial, than those learners who are high-knowledge & low-spatial.

High-knowledge learners use prior ideas to compensate poor guidance; high-spatial integrate visual/verbal images more easily; low-spatial require extra effort with images which detract from grasping visual / verbal Individual Difference.
Moderate arousal produces situation of greater learning than high or low arousal

Scare tactics, abrasive punishment, extreme threats and forceful put-downs do not generate conditions that are ideal for effective learning

- Lancy and Grove (2010)

Positive Environment
What makes good multi-media?

- Mixed modalities -
- Simultaneous elements -
- Integrated meaningful structures -
- Concise -

What should one aim for?

- Conceptual, not topical relevance
- Focused, not split attention
Credits

 (Cambridge, MA: Cambridge University Press)

 “SMART, SMARTer, SMARTTest,” Teaching Workshop Presented at Annual Conference, Arizona Technology in Education Association Vail, Arizona, October 29, 2012

 “Language Play,” 2009, Don L.F. Nilsen and Alleen Pace Nilsen, Department of English, Arizona State University, Tempe, Arizona

 Butterfly pictures: Paul B. Sutherland and William T. Hark (google.com)

Taught High School Science 3 years / Credit Recovery 2 years (Tucson, AZ)
Member, Arizona Technology in Education Association, 2008-2012
OMICS publishing Group Open Access Membership enables academic and research institutions, funders and corporations to actively encourage open access in scholarly communication and the dissemination of research published by their authors. For more details and benefits, click on the link below: http://omicsonline.org/membership.php
Not

THE END