Climate Change, Mycotoxins and Food Safety

Russell Paterson

University of Minho, Portugal
Climate change videos

http://www.youtube.com/watch?v=RHrFBOUI6-8

A. Introduction

Aspergillus flavus = aflatoxins
Aflatoxin B$_1$ (AFB$_1$)

Patulin

Ochratoxin A (OTA)

Deoxynivalenol (DON)
<table>
<thead>
<tr>
<th>Disease</th>
<th>Crop</th>
<th>Fungus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimentary toxic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aleukia</td>
<td>Cereals</td>
<td>Fusarium</td>
</tr>
<tr>
<td>Balkan Nephropathy</td>
<td>Grains</td>
<td>Penicillium</td>
</tr>
<tr>
<td>Hepatocarcinoma</td>
<td>Peanuts</td>
<td>A. flavus</td>
</tr>
<tr>
<td>Deaths</td>
<td>Maize</td>
<td>A. flavus</td>
</tr>
</tbody>
</table>
How Do They Occur?

Biology

Environment

Harvest

Storage
Gives

MYCOTOXINS
How will climate change affect mycotoxins in food?

R. Russell M. Paterson *, Nelson Lima

IBB – Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal

ARTICLE INFO

Article history:
Received 8 April 2009
Accepted 10 July 2009

Keywords:
Mycotoxins
Climate change
Fungi
Aflatoxins
Deoxynivalenol
Ochratoxin A
Temperature
Water activity

ABSTRACT

This invited review and opinion piece, assesses the impact of climate change on mycotoxins in food: only one paper and an abstract referred directly from a substantial literature search and then only in relation to Europe. Climate change is an accepted probability by most scientists. Favourable temperature and water activity are crucial for mycotoxigenic fungi and mycotoxin production. Fungal diseases of crops provide relevant information for pre-harvest mycotoxin contamination. However, the mycotoxin issue also involves post-harvest scenarios. There are no data on how mycotoxins affect competing organisms in crop ecosystems. In general, if the temperature increases in cool or temperate climates, the relevant countries may become more liable to aflatoxins. Tropical countries may become too inhospitable for conventional fungal growth and mycotoxin production. Could this lead to the extinction of thermotolerant Aspergillus flavus? Currently cold regions may become liable to temperate problems concerning ochratoxin A, patulin and Fusarium toxins (e.g. deoxynivalenol). Regions which can afford to control the environment of storage facilities may be able to avoid post-harvest problems but at high additional cost. There appears to be a lack of awareness of the issue in some non-European countries. The era will provide numerous challenges for mycotoxicologists.

© 2009 Elsevier Ltd. All rights reserved.
B. Intergovernmental Panel on Climate Change Report

Global Warming Projections

- CCSR/NIES
- CCCma
- CSIRO
- Hadley Centre
- GFDL
- MPIM
- NCAR PCM
- NCAR CSM

Temperature Anomaly (°C)

Year:
- 1900
- 1950
- 2000
- 2050
- 2100
1. A Warmer Planet – Virtually Definite

- Increased yields
- Decreased yields
- Increased insects

In cool regions

In hot regions

crop fires
Mycotoxin Effect

Increased Mycotoxins

“Parasites lost”, Worse storage

Decreased mycotoxins

But better storage – hot, dry

Increased mycotoxins
More crop/more mycotoxin

Current production = 1000 kg with 1mg toxin
Changed production = 2000 kg

1. Quality same = 2mg toxin
2. Quality worse = > 2mg toxin
3. Quality better =
 a. >1<2 mg toxin
 b. 0 - 1 mg toxin
Hence...

• 3b is the only scenario where less mycotoxin obtained from more crop.

• A very specific statement would be needed explaining how 3b might occur.

• I recommend a general statement: “more mycotoxin is “likely” from more crop”.
2. Heat Waves – Very Likely

DECREASED YIELDS FROM FEWER CROPS: FEWER MYCOTOXINS

BUT:
MORE MYCOTOXINS IN POORER CROPS
3. Precipitation

Heavy – very likely

Crop damage, soil erosion, uncultivable land

Drought - likely

Lower yields/crop damage and failure
Mycotoxin Effect

Heavy – very likely

More mycotoxins pre/post harvest

Drought - likely

More mycotoxins pre harvest.

Fewer post harvest mycotoxins
Asian Climate Change

- Freshwater availability to decrease 2050
- Coastal areas greatest risk from more flooding.
- Weather alterations affect “runoff” and water availability.
By the 2080s

- Floods every year due to sea level rise.

- Largest affect in densely populated, low-lying megadeltas.

- Small islands are especially vulnerable.
Mycotoxin Consequences in Regions

Asia

- Fewer total crops fewer total mycotoxins.
- More ingress of fungi, storage major problem all from flooding.
- Compounded malnutrition effects.
Africa 2020

- More mycotoxins in current cooler areas.
- Fewer mycotoxins in current hot regions.
- Storage better (hot and dry).
- But basic survival main problem.
Europe

- Problems move South to North, e.g. *A. flavus* in Hungary.
- More aflatoxin, OTA, fumonisins in sub mediterranean.
- Less patulin and *Alternaria* toxins in current temperate.
- Tropical mycotoxin problems?
Australia/New Zealand 2030

• Too hot/dry for crops per se.
• Can cope as a developed country.
• Fewer crops so fewer mycotoxins, but those produced high in mycotoxins.
• Storage improves.

• **New Zealand**: more crops/more mycotoxins.
Latin America 2050

- Soybean mycotoxins to increase.
- Chance of fungal “extinction”, low mycotoxins.
- Less healthy crops – more mycotoxins.
- Fewer mycotoxins from arid land.
- Storage may be efficient in hot dry areas.
North America

- Increase yields produce more mycotoxins.
- Floods and drought - more mycotoxins.
- Cool areas change to hot - more mycotoxins.
- Floods/higher temperature - storage probs.
Tropics: Less Developed Countries

Coconut, Maize, Soybeans, Coffee, Cocoa
To Subtropics: Developed

Coconut, Coffee, Maize,

Soybeans, Coffee, Cocoa
E. Mycotoxin Biosynthesis Rates and Climate Change

PRE-CURSORS → FUNGI → MYCOTOXINS

GLOBAL CHANGE

RATE = k

CURRENT CONDITIONS

FUTURE CONDITIONS
F. Climate Change Mycotoxin Cycle Hypothesis

Climate change → More mutagen mycotoxins

Fungal mutation

Precursors → Rate = k

More, new Mycotoxins
G. Water/Drinking Water

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungi</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mycotoxigenic fungi</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mycotoxins</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Agricultural “run off”</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Growth</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mycotoxin production</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
a. More Water

Contamination of crops with mycotoxins and fungi from floods

More fungi in drinking water system from increased growth and floods
More dissolved mycotoxins as temperature increases
b. Less Water - Drought

Less spread of fungi & mycotoxins via water
<table>
<thead>
<tr>
<th>Mycotoxin</th>
<th>Weapon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflatoxin</td>
<td>Yes</td>
</tr>
<tr>
<td>T2 toxin</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Weaponised fungi to take advantage of changed climates.
I. Fungal Physiology
1. Optimum Growth °C

- *A. flavus* 35 - 21 = 14
- *A. ochraceus* 30
- *P. verrucosum* 26
- *P. expansum* < 25
- *Alt. alternate* 23
- *F. graminearum* 21
Fungal Relative Dominance

(\% infected, Brazil)

<table>
<thead>
<tr>
<th></th>
<th>Pepper</th>
<th>Brazil nuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus flavus</td>
<td>44</td>
<td>27</td>
</tr>
<tr>
<td>A. ochraceus</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

+ 100 years climate change: No relative change, or extinct in Brazil.
<table>
<thead>
<tr>
<th>Present</th>
<th>100 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. carbonarius (OTA)</td>
<td>A. flavus</td>
</tr>
<tr>
<td>A. flavus</td>
<td>A. carbonarius</td>
</tr>
<tr>
<td>P. expansum</td>
<td>No P. expansum</td>
</tr>
</tbody>
</table>

N.B. Reports of A. flavus from grapes and aflatoxin in grape juice exist
So *Aspergillus flavus* with Climate change at 5°C/100 years

Not dominated by:

Alternaria, Fusarium, Aspergillus (other), Penicillium.
Aflatoxins will not be supplanted by:

- Alternariol, deoxynivalenol, fumonisins, ochratoxin A, patulin.

- However, all diminished in already hot regions.
- Same calculations for other mycotoxins possible
Optimum Mycotoxin Production °C

- Aflatoxin 33
- Deoxynivalenol 30 or 26
- Ochratoxin A 28 or 25
- Tenuazonic acid 20
So aflatoxins will not be supplanted by:

- Ochratoxin in peanuts, corn, wheat, cheese
- Deoxynivalenol in corn, wheat
- Fumonisin in corn
<table>
<thead>
<tr>
<th>Mycotoxin</th>
<th>Opt °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fumonisin</td>
<td>25</td>
</tr>
<tr>
<td>Ochratoxin A</td>
<td>25</td>
</tr>
<tr>
<td>Alternariol</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>A. ochraceus</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Soy</td>
<td>14.75</td>
</tr>
<tr>
<td>Peanuts</td>
<td>9.25</td>
</tr>
</tbody>
</table>
Consequences

• Drought: More *A. ochraceus* & ochratoxin

• Floods: More *Penicillium* spp & ochratoxin, *patulin in temperate wet regions.*

• But ochratoxin more problematic overall from *Aspergillus* & *Penicillium*
Amelioration Strategy

- Plant in cooler season avoid mycotoxin heat stress.
- Change crop variety e.g. chili has less AF.
- Crop relocation: “Parasite lost”?
- Biodegradation of mycotoxins.
- Move storage facilities to hot dry areas.
Underlying Policy Framework

- Focus R&D on mycotoxins (effect on competition?).
- Who does R&D in developing countries?
- Land reform: Best crop in 50 years?
- Relocate storage equipment, political decision needed.
- Training; capacity building.
Implementation Constraints

• Developing countries may not cope with more mycotoxins from increased crops in some regions.

• Markets reject crops grown to avoid mycotoxins e.g. Hot chili too hot, GM?
Implementation Opportunities

- Analytical kit manufacturers.
- Developed countries cope with tropical crops.
- Plant crops in “Parasites Lost”.
- New hot dry areas good for storage.
Conclusions

– More mycotoxins
– More “high temperature” mycotoxins
– Region “up” shift - sub trop goes tropical
– Parasites lost
– Heat extinction
– New species
– Storage opportunities
Thank you
Frequency % Corn

<table>
<thead>
<tr>
<th>Fungus</th>
<th>Toxin</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusarium verticillioides</td>
<td>fumonisin</td>
<td>100</td>
</tr>
<tr>
<td>F. graminearum</td>
<td>DON</td>
<td>75</td>
</tr>
<tr>
<td>Alternaria alternata</td>
<td>alternariol</td>
<td>21</td>
</tr>
<tr>
<td>Aspergillus flavus</td>
<td>aflatoxin</td>
<td>2</td>
</tr>
</tbody>
</table>
Commodity with aflatoxin decrease and mycotoxin decrease as too hot in some regions

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Mycotoxin decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>fumonisins, ochratoxin A, deoxynivalenol</td>
</tr>
</tbody>
</table>
Commodity with aflatoxin increase and mycotoxin decrease as too hot in some regions

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Mycotoxin decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>deoxynivalenol, ochratoxin A</td>
</tr>
<tr>
<td>Peanuts</td>
<td>ochratoxin A</td>
</tr>
</tbody>
</table>
Plus 100 years warming

- A. flavus aflatoxin 1st
- F. verticillioides fumonisin 2nd

- Too hot:
 - F. graminearum DON
 - A. alternata alternariol
Fusarium verticillioides, F. proliferatum

- will not be replaced by toxigenic (same basic reason relating to optimum temperatures):

 - *Alternaria*

 - *Fusarium* (other)

 - *Penicillium*
But could be replaced by...

Toxigenic:

Aspergillus flavus MOST LIKELY

A. ochraceus

Fusarium culmurum
So in corn...

- Aflatoxins, ochratoxin A (from A. ochraceous), deoxynivalenol (from) could increase in relation to fumonisins.

- But probably not *Alternaria* toxins (e.g. alternariol, tenuazionic acid). Not found in corn anyway.
Similarly Aspergillus ochraceus/A. carbonarius

• Will not be replaced by:

 • Alternaria

 • *Fusarium gaminearum, F. Culmorum*

 • *Penicillium*
But could be replaced by...

• Toxigenic:

• *Aspergillus flavus*

• *Fusarium verticillioides, F. proliferatum*
So in actual commodities

- Peanuts: More aflatoxins compared to ochratoxin A
- Corn: More fumonisins, and aflatoxins than OTA
- Grapes, wine: more aflatoxins possible.
C. Specific Regions
1. Africa 2020

- Crop Yields reduced by 50%. Debatable.
- Agricultural production severely compromised.
- Higher levels of crops in some currently cooler areas.
- Adverse affect food security and exacerbate malnutrition.
- Increase of 5 to 8% of arid and semi-arid land
2. Europe

- Magnification of regional differences in natural resources and assets.
- Worsen high temperature/drought reduces water availability/crop productivity in South.
3. Australia/New Zealand 2030

- Water security problems intensify
- Production from agriculture to decline from drought.
- Initial benefits projected in New Zealand.
4. Asia

- Freshwater availability to decrease by 2050
- Coastal areas at greatest risk from more flooding from sea/rivers.
5. Latin America 2050

Increased temperature, decreased soil water. Tropical forest goes savanna grassland. Semi arid replaced by arid vegetation. Significant tropical species extinction.
Continued...

• Crop productivity decrease; adverse food security.

• Soybean yields increase in temperate zones – specific
6. North America

- Warming in western mountains to cause decreased snowpack, more winter flooding and reduced summer flows.

- Water resources stretched.
North America pre 2050

• Increase in rain-fed agriculture 5 to 20%
• Important variability among regions.
• Crops challenged at warm end of range
• Lack of water resources.
Toxigenic fungi, biosynthesis rates and climate models
REPORTED SOYBEAN FUNGI

Aspergillus flavus, A. ochraceus, A. versicolor

Penicillium viridicatum, P. citrinum, P. expansum

Alternaria spp
POTENTIAL SOYBEAN MYCOTOXINS

Aflatoxins, ochratoxin A, sterigmatocystin,

Penicillic acid, patulin, citrinin, griseofulvin,

Alternariol, altenuene
Soybean mycotoxins?

- Potentially most mycotoxins.

- Soybeans are resistant to aflatoxins in field.

- Susceptible when stored under high moisture/temperature. But storage easier in new dryer regions.
However, this talk will focus on...

Climate Change 2007: Synthesis Report

Synthesis Report

An Assessment of the Intergovernmental Panel on Climate Change

This underlying report, adopted session by session at IPCC Plenary XXVII (Valencia, Spain, 12-17 November 2007), represents the formally agreed statement of the IPCC concerning key findings and uncertainties contained in the Working Group contributions to the Fourth Assessment Report.

Based on a draft prepared by:

Core Writing Team

Lenny Bornstein, Peter Bosch, Cedricio Canziani, Zhanlin Chan, Rintje Christ, Ogundido Davidson, William Keo, Salomond Hur, David Karoly, Vladimir Kellere, Zsigmond Kundzewicz, Jen Lou, Ulrike Lohmann, Martin Manning, Teruh Masumoto, Bettina Münch, Bart Mez, Menafar Mira, Neville Nicholls, Leonard Huss, Rajendra Pachauri, Joost Pallazie, Martin Parry, Dale Gi, Nissim Randhawa, Andy Rosier, Jiwen Ren, Kayewi Rith, Cynthia Rosenzweig, Mithile Rustucou, Christopher Schneider, Youtse Sibeko, Susan Solomon, Peter Stock, Donald Stouffer, Taiji Sugiyama, Rob Swart, Doreen Teppek, Ccious Voge, Gary Yoho

Extended Writing Team

Tony Birkett

Review Editors

Abdulkader Allafi, Roxane Bojier, Sandra Díaz, Ismail Elgizouli, Dave Grieger, David Hawkins, Olav Hohmeyer, Ruda Pansch Jaleke, Lucke Kjelbot-Rognstad, Neil Leary, Hoosung Loo, David Mostl
Earth Science & Climatic Change
Related Journals

- Journal of Climatology & Weather Forecasting
- Journal of Ecosystem & Ecography
- Journal of Environmental & Analytical Toxicology
Earth Science & Climatic Change
Related Conferences

- 4th International Conference on Earth Science and Climatic Change at Alicante, Spain.
OMICS Group Open Access Membership

• OMICS publishing Group Open Access Membership enables academic and research institutions, funders and corporations to actively encourage open access in scholarly communication and the dissemination of research published by their authors.

• For more details and benefits, click on the link below:
• http://omicsonline.org/membership.php