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Abstract
Mesenchymal stem cells (MSCs) derived from human embryonic stem cells (ESCs) and fetal tissues have been 

shown to secrete cardioprotective exosome, a protein- and RNA40 containing vesicle. Since the therapeutic efficacy 
of MSCs is inversely correlated with developmental stage of the donor, we determine if this correlation extended to 
the cardioprotective MSC exosomes by examining exosomes secreted by MSCs derived from non-embryonic/fetal 
tissues e.g. umbilical cord. 

Unlike ESC- and fetal-MSCs, cord-MSCs have a much smaller proliferative capacity. To circumvent this and 
produce sufficient MSC exosomes for testing, they were immortalized via MYC over-expression. Like ESC-MSCs, 
MYC immortalization of cord MSCs expanded their proliferative capacity to bypass senescence, reduced plastic 
adherence, enhanced growth rate, and eliminated in vitro adipogenic differentiation potential without compromising 
exosome production. Exosomes produced by immortalized cord-MSCs were cardioprotective, and were equally 
efficacious in reducing infarct size in a mouse model of myocardial ischemia/reperfusion injury. However, cord MSCs 
produced the least amount of exosomes followed by fetal- and then ESC-MSC in decreasing order of developmental 
maturity or youth of the donor tissues, suggesting that the inverse correlation between the therapeutic efficacy of MSC 
and developmental stage of the donor is underpinned by rate of exosome production.

Keywords: Mesenchymal stem cell; Exosome; Umbilical cord;
Myocardial ischemia/Reperfusion injury

Abbreviation: ESC: Embryonic Stem Cell; MSC: Mesenchymal
Stem Cell; CM: Conditioned Medium; IS: Infarct Size; AAR: Area at 
Risk

Introduction
Mesenchymal stem cells (MSCs), often categorized as adult stem 

cells are multipotent stem cells that could differentiate into at least 
three cell types namely, adipocytes, chondrocytes and osteocytes [1-
6]. They are also reported to be able to differentiate into endothelial, 
cardiomyocytes and neurons [7-13] with negligible risk of teratoma 
formation. This wide-ranging differentiation potential were used to 
rationalize MSC transplantation to treat musculoskeletal injuries, 
improve cardiac function in cardiovascular disease and ameliorate 
the severity of graft-versus-host-disease [14]. This together with its 
readily accessible tissue sources made MSCs one of the most widely 
tested stem cells in clinics today. In 2010 alone, there were 101 clinical 
trials using MSCs to treat a variety of disease conditions [15]. Unlike 
the controversial embryonic stem cells, MSCs could be isolated from 
many ethically palatable tissues such as bone marrow [16,17], adipose 
tissue [17,18], liver [19,20], muscle [21,22], amniotic fluid [23,24], 
placenta [25,26], umbilical cord blood [16,27], dental pulp [28,29]. 
However, it is generally observed that the biological activity and 
therapeutic potency of MSCs correlate inversely with developmental 
stage of the donor [30-48]. Therefore, MSCs from ethically and socially 
controversial but “young” tissues such as fetal tissues [49] and human 
embryonic stem cells (ESCs) [50] continue to be investigated for their 

therapeutic potential. Many studies reported that MSCs derived from 
these latter tissues are more robust in their proliferative capacity, 
biological activity and therapeutic potency [20,51-55]. 

The therapeutic efficacy of MSC transplantations in the treatment 
of different diseases had been rationalized on the differentiation 
potential of MSCs to replace lost or injured cells. However, this 
differentiation-based mechanism has become increasing untenable. In 
animal models and even patients where MSC transplantation elicited 
a therapeutic response, <1% of transplanted MSCs reach their target 
tissue with even less engrafting or differentiating at the injured tissue 
[56-64]. An alternative and more conciliatory mechanism implicating 
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MSC secretion as the therapeutic agent has been proposed [65-73]. Our 
group demonstrated that MSC secretion alone could improve cardiac 
function in pig and mouse models of acute and chronic myocardial 
ischemia [74-76] and identified exosome, a membrane vesicle as 
the therapeutic factor in the secretion [77,78]. Others subsequently 
confirmed exosomes as the factor mediating the therapeutic trimester 
fetal tissues [77,79] for the production of secretion and exosomes. 
Since developmental stage of the donor is a dominant determinant of 
the therapeutic potency of MSCs and exosome is the factor mediating 
this potency, we tested here if exosome production is correlated to 
the developmental stage of the donor tissue by comparing exosome 
production from hESC-derived MSC and the developmentally more 
mature tissues such as the umbilical cord from a full term delivery. 

In our hands, MSCs derived from umbilical cord could not be 
expanded beyond six passages while MSCs derived from human ESCs 
and fetal tissues could be passaged for more than 20 passages to generate 
up to 10^19 cells [79,80]. In addition, cord MSCs have a longer doubling 
time. Therefore, expanding cord MSCs to produce sufficient exosomes 
for comparative studies with exosomes from either ESC- or fetal MSCs 
was not feasible. To circumvent this issue, we immortalized the cells 
by over-expressing MYC gene. We had previously use this method 
to immortalize human ESC-derived MSCs and observed that despite 
some changes, the immortalized cells retained many fundamental MSC 
characteristics including the production of cardioprotective exosomes 
[81]. 

In this study, we characterized MYC-immortalized 109 cord MSCs, 
their production of exosomes and the efficacy of their exosomes in 
reducing reperfusion injury in a mouse model of ischemia/reperfusion 
injury, and compared these against our previous analysis of MYC-
immortalized ESC-MSCs.

Materials and Methods
 Derivation of cord MSCs

The collection of umbilical cords of term babies after obstetric 
delivery was carried out in KK Women’s and Children’s Hospital 
under an IRB approved protocol (CIRB 2009/289/D). Umbilical cords 
were stored in DPBS with 10 μg/ml gentamycin at 4°C during the 
transfer to the lab. To isolate MSCs, the cord was cut into 3 cm-long 
pieces, rinsed with DPBS + gentamycin to remove as much blood as 
possible and then cut lengthwise to remove blood vessels. They were 
digested with 300 U/ml collagenase, 1 mg/ml hyaluronidase and 3 mM 
CaCl2 in PBS for 1 h at 37°C with occasional agitation. The cord pieces 
were then crushed with forceps to release cells from the Wharton’s jelly 
and then digested with 0.05% trypsin-EDTA for 30 min at 37°C before 
being crushed again with forceps. The cell suspensions were combined, 
washed and cultured as previously described [75].

Oncogenic transformation of cord MSCs

MYC transformation of cord MSCs was performed using a 
lentivirus carrying the CMYC gene as previously described [81]. Briefly, 
cord MSCs were plated at 10^6 cells per 10 cm dish and infected with 
viruses at a MOI of 5 in the presence of 4 μg/ml polybrene overnight. 
The following day, culture medium was replaced with fresh medium 
and then 48 h later with medium containing puromycin (2 μg/ml). 
After 72 h of puromycin treatment, the surviving cells were allowed 
to expand. Clonal lines from each of three independently infected cell 
cultures were derived by limiting dilution. When individual clones 
were expanded to 10^7 cells per clone (or a confluent 15 cm culture 
dish), the cells were designated p1. Three clonal lines were generated 

and named CMSC3A1, CMSC3A3 and CMSC3A4 lines, respectively. 
Integration of the CMYC or GFP transgene was confirmed by amplifying 
genomic DNA using specific primers for exon2 and exon3 of CMYC 
respectively: 5’- GCCCCTGGTGCTCCATGAGGAGACACC’-3’ and 
5’- ACATTCTCCTCGGTGTCCGAGG-3’ using the following PCR 
conditions: one cycle of 94, 2 min; 32 cycles of 94°C, 15 s; 60°C, 30 s; 
72°C, 90 s and one cycle of 72°C 5min. The PCR products were resolved 
on a 1% agarose gel. Differentiation of the MYC-MSCs to adipocytes, 
chondrocytes and osteocytes was performed using adipogenic, 
chondrogenic and osteogenic hMSC Differentiation Bullet Kits, 
respectively (Lonza, Walkersville, MD) according to manufacturer’s 
instructions. Karyotyping by G-banding was performed by the 
Cytogenetics Laboratory, KKH.

 Quantitation of MYC RNA transcript by qRT-PCR

 20 ηg cellular RNA was converted to cDNA using a High-Capacity 
cDNA Reverse Transcription Kit (Life Technologies, Carlsbad, CA). 
The cDNA was then amplified by one cycle of 94°C, 10 min; 40 cycles 
of 94°C, 15 s; 60°C, 60 s and one cycle of 95°C, 15 s, 60°C 60 s, 95°C, 
15 s with primer sets specific for either MYC or ACTB transcript on 
the StepOnePlus Real-Time PCR system (Applied Biosystems, Life 
Technologies).

The MYC-specific primer set is 5’ ACT TAG TTG CGT TAC ACC 
C 3’ and 5’ AAA TAA AGC CAT GCC AAT CTC 3’.

Telomerase activity

Relative telomerase activity was measured by SYBR® Green 
real time quantitative telomeric repeat amplification protocol 
assay using a modified method as described by Wege et al. [82]. 
Briefly, 3×10^6 cells were harvested and cell lysate was prepared 
using a commercially available mammalian cell extraction kit (Cat 
K269-500-1, BioVision, Milpitas, CA). The reagents for the PCR 
amplification was 1 μg of protein cell lysate, 10 μL of 2 X SYBR Green 
Super Mix (Cat 170-8880, BioRad, Hercules, CA) with 0.1 μg of TS 
primer (5’-AATCCGTCGAGCAGACTT-3’), 0.1 μg of ACX primer 
(5’-GCGCGG[CTTACC]3CTAACC-3’) and 10 mM EGTA in a total 
volume of 25 μL. The reaction was first incubated at 25°C for 20 min 
to allow the telomerase in the cell lysate to elongate the TS primers 
followed by 2 min incubation at 95°C to inactivate telomerase activity 
and denature the primers. The telomerase product was amplified by 
PCR for 40 cycles of 95°C, 30s; 60°C, 90s. The relative telomerase 
activity was assessed against that of HEK293 cells using the threshold 
cycle number (or Ct value) for 1 μg protein cell lysate.

Rate of cell cycling

To assess cell cycle rate, 2×10^7 cells were pre-labelled in 2 ml of 
10 μM CFDA (Molecular Probe, Eugene, OR) in PBS at 37°C for 15 
min, cultured for 24 h and then replated at 5×10^4 cells per well in 
6-well coated with gelatin. At 0, 24, 48, and 72 h, cells from duplicate 
wells were harvested, and fixed in 2% paraformaldehyde, and analyzed 
on FACSplus (Becton Dickinson; San Jose, CA). The number of cell 
cycles per 24 h was calculated assuming that each halving of cellular 
fluorescence represented one cell division. Therefore, the number of 
cell cycles per 24 h (n) was calculated as n=lg(F-Fn)/lg2 where F is initial 
average cellular fluorescence and Fn is the average cellular fluorescence 
after 24 h. The number of cell cycles was then plotted against time to 
derive the average time per cell cycle.

Surface antigen analysis

Expression of cell surface antigens on HuES9.E1 and CMSC3A1 
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MSCs was analyzed using flow cytometry as previously described 
[81]. The cells were trypsinized for 5 min, centrifuged, resuspended in 
culture media and incubated in a bacterial culture dish for 1 h in a 37ºC, 
5% CO2 incubator. The cells were collected, centrifuged, washed in 2% 
FBS. 2.5×10^5 cells were then incubated with each of the following 
conjugated monoclonal antibodies: CD29-PE, CD44-FITC, CD49a-
PE, CD49e-PE, CD105-FITC, CD166-PE, CD73-FITC, CD34-FITC, 
CD45-FITC, HLADR-PE, and MHC1-PE (PharMingen, San Diego, 
CA) for 1 h on ice. After incubation, cells were washed and resuspended 
in 2% FBS. Nonspecific fluorescence was determined by incubation 
of similar cell aliquots with isotype-matched mouse monoclonal 
antibodies (PharMingen, San Diego, CA). Data were analyzed by 
collecting 20,000 events on a BD FACSCalibur™ Flow Cytometer (BD 
Biosciences, San Jose, CA) instrument using CELLQuest software.

Illumina gene chip analysis

Total RNA was prepared in technical triplicates from different 
passages of MSCs using Illumina® TotalPrep RNA Amplification Kit 
(Ambion, Inc., Austin, TX). The MSCs were HuES9-E1 MSCs at p15 
and p16; E1-MYC 21.1 at p3, p4, and p5; E1-MYC 16.3 line at p4, p7, 
and p8; CMSC3A1 at p4, p5, and p6; CMSC3A3 at p4, p5, and p6; and 
cord MSCs at p1 and p2. 500 ηg RNA was converted to biotinylated 
cRNA using the Illumina RNA Amplification Kit (Ambion, Inc., 
Austin, TX) according to the manufacturer’s directions. 750 ηg of 
the biotinylated cRNA were hybridized to the Sentrix HumanRef-8 
Expression BeadChip Version 3 (Illumina, Inc., San Diego, CA). 
Washing and scanning were performed according to the Illumina 
BeadStation 500x manual. The data were analyzed using Genespring 
GX 10. Quantile normalization was performed by a shift to 75th 
percentile, and the normalized data were baseline transformed to the 
median of all samples.

 Exosome preparation

Exosomes were purified from MSC conditioned medium (CM) by 
size exclusion using HPLC as previously described [77,81].

Mouse model of myocardial ischemia/reperfusion injury

Cardioprotective effect of the exosomes was tested in a mouse 
model of ischemia and reperfusion injury. MI was induced by 30 min 
left coronary artery (LCA) occlusion and subsequent reperfusion. 5 
min before reperfusion, mice were intravenously infused with 200 μl 
saline solution of 0.3 μg exosome protein purified from culture medium 
conditioned by MYC-MSCs. Control animals were infused with 200 μl 
saline. After 24 h reperfusion, infarct size (IS) as a percentage of the 
area at risk (AAR) was assessed using Evans’ blue dye injection and 
TTC staining as described previously [75].

 Statistical analysis

Two-way ANOVA with post-hoc Dunnett was used to test the 
difference in infarct size between groups. Correlation coefficient of 
each pairs of array was assessed using Pearson correlation test.

Results
Immortalization of cord MSCs

Primary umbilical cord derived MSCs have a limited expansion 
capacity of about 6 passages in our hands. As such, a single cord 
preparation would potentially generate only 108MSCs against >1019 
MSCs from a single preparation using human ESCs or fetal tissue. To 
generate sufficient quantities of exosomes for comparative analyses 

against those produced by hESC-derived MSCs (HuES9.E1) [80] and 
the MYC-234 immortalized HuES9.E1 or E1MYC [81], primary cord 
MSCs, p3 were infected with lentivirus carrying the MYC oncogene. 
After puromycin selection, surviving cells were re-plated at low 
density ranging from 20,000-50,000 cells per 10 cm plate to produce 
physically well separated colonies and selected colonies were expanded 
to establish clonal lines. Three colonies from three independent 
infections were eventually selected to establish CMSC3A1, CMSC3A2 
and CMSC3A3 clonal lines. The transformed cells were smaller and 
rounder with prominent nuclei. They had reduced adherence to plastic 
culture and reduced contact inhibition at confluence so that the cells 
formed clusters instead of adhering to the plastic dish as a monolayer 
(Figure 1A). PCR amplification of genomic DNA revealed that the 
MYC transgene was integrated into the genome (Figure 1B). The level 
of MYC transcripts in CMSC3A1 was higher than that in HuES9.E1 
MSCs, but lower than E1MYC16.3 MSCs (Figure 1C). Since MYC was 
reported to promote cell immortalization by activating telomerase to 
maintain telomeric repeats [83], we determined telomerase activity 
and observed a concordance between telomerase activity and MYC 
expression level. Telomerase activity in CMSC3A1 cells was higher 
than that in HuES9.E1 but lower than that in E1MYC16.3 which 
was established by MYC transformation of HuES9.E1 (Figure 1D). 
CMSC3A1 also has a normal 46 XY karyotype (Figure 1E). Consistent 
with the lower telomerase activity, MYC-transformed cord MSC lines 
have a cell cycle of ~13 hours which is longer than the 11 hours for 
E1MYC16.3 but shorter than the 19 hours for HuES9.E1 (Figure 1F).

Characterization of MYC-immortalized cord MSCs

The surface antigen profile of the MYC-transformed cord MSCs, 
CMSC3A1, was qualitatively similar to that of MYC-transformed 
E1MYC16.3. The cells were CD29+,CD44+, CD49a+ CD49e+, CD73+ 
CD105+, CD166+, MHC I¯, HLA-DR¯, CD34¯ and CD45¯ (Figure 2A). 
The in vitro differentiation potential of CMSC3A1 was also similar to that 
of immortalized human ESC-derived MSC line, E1MYC16.3 [81]. Like 
E1MYC16.3, CMSC3A1 cells differentiated readily into chondrocytes 
and osteocytes but not adipocytes (Figure 2B) [84]. During induction of 
adipogenesis which consisted of 4 cycles of a 6-day treatment of 3 days’ 
exposure to induction medium and 3 days’ exposure to maintenance 
medium, most CMSC3A1 cells like E1MYC16.3 died during exposure 
to the induction medium. These observations suggested that MYC-
transformed cord MSCs cannot undergo adipogenic differentiation 
which is a defining property of MSCs.

Gene expression profile

The genome-wide gene expression profile of HuES9.E1, primary 
cord-derived MSCs, E1MYC16.3, E1MYC21.1, CMSC3A1 and 
CMSC3A3 was determined by microarray hybridisation on the 
Illumina Sentrix HumanRef-8 Expression BeadChip containing more 
than 24,000 unique features, and assessed for the relatedness between 
cell types. The expression profile of CMSC3A1 resembled that of MYC-
transformed human ESC-derived cell lines, E1MYC16.3 (correlation 
coefficient, r2= 0.95) more than that of its parental cord-derived MSCs 
(r2= 0.92) or HuES9.E 1 (r2= 0.92) (Fig. 3A) as illustrated by hierarchical 
clustering (Figure 3B). Upon MYC immortalization, 295 and 377 genes 
were respectively up- and down-regulated by 2.0 fold in cord-derived 
CMSC3A lines while only 86 and 120 genes were similarly up- or 
down-regulated in the human ESC-derived lines. Of these genes, 25 
genes were up-regulated and 39 down-regulated genes in both MYC-
transformed MSCs (Figure 3C).
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Isolation of exosomes from culture medium conditioned by 
CMSC3A1

We had previously demonstrated that exosomes secreted by ESC-
derived MSCs and their MYC-transformed progeny were protective 
in a mouse model of myocardial ischemia and reperfusion injury 
[75,77,81]. To test if transformed cord MSCs also produced similar 
exosomes, CMSC3A1 were grown in a chemically defined medium, 
the conditioned culture medium (CM) was harvested and exosomes 
purified as previously described [77,85]. The HPLC protein profile of 
the CM was similar to that of CM from ESC-derived MSCs and their 
MYC-transformed progeny [77] (Figure 4A) with the fastest eluting 
fraction having a retention time of about 12 minutes. Dynamic light 

scattering analysis of this peak revealed the presence of particles with a 
hydrodynamic radius range of 50-65 ηm. Western blot analysis of this 
peak also revealed the presence of exosome-associated proteins such 
as CD9 and CD81 (Figure 4B), suggesting that this peak contains the 
exosome fraction of the CM. Notably, MYC protein was not detected 
in any of the exosome fractions.

Cardioprotection by CMSC3A1 exosomes

HPLC-purified exosomes from either E1MYC16.3 or CMSC3A1 
was administered intravenously to the mouse model of myocardial 
ischemia-reperfusion injury at a 0.3 μg per mouse. The area at risk 
(AAR) as a percentage of left ventricular (LV) area in CMSC3A1 
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Figure 1: Immortalization of cord MSCs. (A) Cell morphology of parental cord MSC and MYC-transfected cord MSCs as observed under phase contrast microscopy, 
scale bar 100 μm. (B) PCR analysis of cellular DNA from HuES9.E1 MSCs, MYC-transfected HuES9.E1 MSCs (E1-MYC), and MYC-transfected cord MSCs clones 
CMSC3A1 and CMSC3A3. DNA was amplified using primers specific for exon 2 and exon 3, respectively. The expected PCR fragment size for the endogenous MYC 
gene was 1.7 kb and for the transfected MYC cDNA was 0.37 kb as represented by the amplified fragment from the MYC lentivirus. (C) Relative MYC transcript level. 
MYC transcript levels in HuES9.E1 (MSCs derived from hESC), E1MYC16.3 (MYC-transformed HuES9.E1 MSC line) at p8 and p18, and CMSC3A1 MYC-transformed 
cord MSC line at p8 and p18 were determined by quantitative RT-PCR. The internal reference for each sample was GAPDH transcript. The MYC transcript level in 
each sample was normalized to that in HuES9.E1. (D) Relative telomerase activity. Telomerase activity in each cell type was assayed using 1 μg of cell lysate protein 
to first extend a TS primer and any extendedproduct was then quantitated by real time PCR. The Ct value reflected the amount of telomerase product and therefore 
the telomerase activity in the lysate. Note: Ct value is inversely proportional to the template concentration in the PCR reaction. (E) Karyotype analysis of CMSC3A1 by 
G-banding. (F) Rate of cell cycling. Cells were labelled with CFDA and their fluorescence was monitored over time by flow cytometry. The loss of cellular fluorescence 
at each time point was used to calculate the number of cell division that the cells have undergone as described in Materials and Methods.
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Figure 2: Surface antigen profiling and differentiation potential. (A) CMSC3A1 (green) and HuES9.E1 (red) MSCswere stained with a specific antibody conjugated to 
a fluorescent dye and analyzed by flow cytometry. Nonspecific fluorescence (purple) was assessed by incubating the cells with isotype-matched mouse monoclonal 
antibodies. (B) HuES9.E1 and CMSC3A1 MSCs were induced to undergo (left panel) osteogenesis and then stained with von Kossa stain; (middle panel) chondrogenesis 
and then stained with Alcian blue; (right panel) adipogenesis where CMSC3A1 and HuES9.E1 MSCs were exposed to adipogenesis induction medium for two days.
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regulated (left panel) and down-regulated (right panel) genes upon MYC immortalization of HuES9.E1 and cord MSCs, represented by Venn diagrams. Fold change 
> 2.0.
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exosome, E1MYC16.3 exosome or the saline-treated control group 
sectioned, stained and measured as previously reported for E1MYC 
16.3 was similar (Figure 5A). The relative infarct size (IS/AAR) in mice 
treated with E1MYC16.3 exosomes or CMSC3A1 exosomes was 22.6 ± 
4.5%, and 19.8 ± 2.9%, respectively and their relative infarct sizes were 
significantly lower than the relative infarct size of 38.5 ± 5.6% in saline-
treated mice (P<0.002 and P<0.001, respectively) (Figure 5B).

Discussion
Human cord-MSCs, like human ESC derived-MSCs could be 

immortalized by over expression of MYC gene to increase telomerase 
activity, enhance rate of proliferation and bypass senescence. The 
immortalized MSCs retained many of the MSC characteristics. Their 
genome-wide gene expression profile was highly similar to that of 
their parental cells with a correlation coefficient of 0.92. However, 
we observed this gene expression profile was more similar to that of 
MYC-immortalized ESC-MSCs with correlation coefficient of 0.95. The 
immortalized cells also have the characteristic MSC surface antigen 
profile: CD29+, CD44+, CD49a+ CD49e+, CD105+, CD166+, MHC I¯, 
HLA-DR¯, CD34¯ and CD45¯. However, in contrast to a previous 
report that observed no fundamental changes in MSC properties 
after MYC immortalization [86], several MSC features were altered. 

These alteration included a reduced adherence to plastic and a failure 
to undergo adipogenesis, and were similarly observed in ESC-MSCs 
after MYC immortalization [81]. Notwithstanding these changes, the 
MYC-immortalized cord MSCs like the MYC-immortalized ESC-
MSCs retained a normal karyotype and the potential albeit limited 
to differentiate, suggesting a non-tumorigenic phenotype. Indeed, 
MYC-immortalized ESC-MSCs failed to engraft when transplanted in 
immune compromised mice (unpublished data). In addition, MYC-
immortalized cord MSCs also secreted exosomes that were equally 
efficacious as those from MYC-immortalized ESC MSCs and could 
reduce infarct size in a mouse model of ischemia/reperfusion injury 
[81]. As ESC-MSC exosome-mediated reduction in infarct size was 
previously shown to correlate with an improvement in cardiac function, 
ATP/ADP and NADH/NAD ratios, immune cell infiltration and 
survival signalling [78], the similar reduction mediated by exosomes 
from MYC-immortalized cord MSCs implied that they have similar 
efficacy in restoring cardiac function.

The most notable difference between the MYC-immortalized 
cord- and ESC-MSCs was the exosome yield. A liter of culture 
medium conditioned by MYC-immortalized cord MSCs yielded 177 
μg exosomes while that conditioned by MYC-immortalized ESC MSCs 
yielded 1282 μg exosomes. This exosome yield for MYC-immortalized 
cord- MSCs (177 μg per liter) was even lower than that of non-
immortalized ESC-MSCs and fetal-MSCs which produced ~500 and 
~800 μg per liter of conditioned medium respectively (unpublished 
data) but was comparable to MYC-immortalized adult bone marrow-
MSCs (unpublished data). We generally observed that after MYC 
immortalization, MSCs produced more exosomes and we attributed 
this to the smaller cell size of the immortalized MSCs which resulted in 
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Figure 4: Analysis of secretion. (A) HPLC fractionation of CMSC3A1 
conditioned medium. CMSC3A1 conditioned medium was fractionated on a 
HPLC using BioSep S4000, 7.8 mm x 30 cm column. The components in 
CM were eluted with 20 mM phosphate buffer with 150 mM of NaCl at pH 
7.2. The elution mode was isocratic and the run time was 40 minutes. The 
eluent was monitored for UV absorbance at 220 ηm. Each eluting peak was 
then analyzed by light scattering. The fastest eluting peak was labelled as 
the exosome fraction and collected for subsequent analysis. (B) Western blot 
analysis. Proteins from the lysates of the various MSC lines as well as their 
HPLC-686 purified exosomes were separated on SDS-PAGE and probed with 
anti-MYC, anti-ACTB, anti-CD81 and anti- CD9 antibodies.
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Figure 5: Cardioprotection by CMSC3A1 exosomes. 0.3 μg HPLC-
purified exosomes from either E1MYC16.3 or CMSC3A1 was administered 
intravenously to a mouse model of acute myocardial/ischemia reperfusion 
injury five minutes before reperfusion. Infarct size (IS) as a percentage of the 
area at risk (AAR) upon treatment with saline (n = 10), E1MYC16.3 exosomes 
(n = 4) and CMSC3A1 (n = 4) were measured (A,B). (*, P < 0.002 and **, P 
< 0.001). (C–E) Representative pictures of Evan blue (blue) and TTC (pink) 
staining on hearts of mice treated with (C) saline, (D) E1-MYC-exos, or (E) 
CMSC3A1-exos.
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a higher cell density for each confluent culture. The inverse correlation 
between the exosome production with developmental maturity of the 
donor tissues supported the correlation between therapeutic efficacy of 
MSC secretion and therefore MSCs with the “youthness” of the donor. 
It is possible that the composition of the exosomes from MSCs of donors 
at different developmental stages is different. However, this difference 
in composition is not likely to contribute to the efficacy of the exosomes 
from MSCs of different donors as we observed that similar efficacy was 
achieved with the same exosome dosage. We therefore propose that the 
correlation between MSC therapeutic efficacy and developmental stage 
of the donor is underpinned by exosome production.
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