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Introduction
A fundamental assumption of linear regression is that the error 

terms are uncorrelated. When repeated measurements are made 
over time on a fixed cohort of patients, this assumption is likely to 
be violated. Ordinary least squares regression on this type of data 
will typically result in p-values that are artificially (and possibly 
dramatically) low, since the repeat measurements are not providing 
independent information about the true underlying relationship 
between the predictor and outcome variables. Various methods can 
be used to analyze quantitative outcomes measured repeatedly over 
time on a set of study subjects. Generalized least squares overcomes 
the issue of correlation by modeling the general form of the covariance 
structure [1]. Linear mixed models offer another approach by treating 
the repeat measurements as random effects [2]. While these methods 
are appealing, they are computationally intensive and, therefore, may 
not be practical for large data sets. Faced with this dilemma, researchers 
may resort to inefficient solutions such as aggregating data into a single 
summary measure for each subject, possibly by time period (e.g., 
mean of all values prior to treatment vs. mean of all values following 
treatment). 

variable after randomly reassigning the values of the dichotomous 
variable across the study subjects. With large data sets, this process can 
also be computationally intensive due to the calculations that take place 
for linear regression in its most general form. However, for the case of 
a single dichotomous predictor variable, the parameter estimate and its 
standard error can be expressed as a simple function of sums and sums 
of squares of the outcome variable. We illustrate how to exploit this fact 
to efficiently estimate the empirical reference distribution. 

Additional predictor variables of any type (dichotomous, 
categorical, quantitative, etc.) are easily accommodated by our 
approach by a simple initial regression procedure that we describe. It 
is also possible to extend our method to any test statistic based only 
on sums and sums of squares of the outcome variable. Through an 
example taken from a large study of dialysis patients, we demonstrate 
this by calculating an empirical p-value for an interaction term that 
reflects the differential change (post minus pre intervention) among a 
set of cases relative to a set of controls. 
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Abstract
Introduction: Methods such as generalized least squares regression and linear mixed models have traditionally 

been used for analyzing repeated measurement data. However, the computational burden for these procedures can be 
prohibitively high for large data sets. We propose an efficient, non-parametric method for the analysis of a continuous 
outcome variable with intrapatient correlation and a dichotomous predictor variable. 

Methods: The patient-level values of the dichotomous variable of interest are randomized to generate sets of equally 
likely permutations of the data under the null hypothesis. For each replication, the test statistic for the dichotomous 
variable is calculated and the collection of all such test statistics forms an empirical reference distribution used to assign 
a p-value to the actual test statistic from the original data. Efficient calculation of the reference distribution is possible by 
operating on the level of sufficient statistics for the outcome variable, as the dichotomous nature of the predictor variable 
then allows for rapid recalculation of the tests statistic at each replicate. An example based on 629,452 measurements 
of systolic blood pressure in 39,313 dialysis patients is used for illustration.

Results: The Monte Carlo p-value for a decrease in systolic blood pressure following a decrease in dialysate 
sodium was 0.04. Other computationally feasible, but inefficient, approaches such as data aggregation and year-over-
year comparisons were unable to find a significant association.

Discussion: Monte Carlo simulation offers a valid approach to analyze a continuous outcome variable with 
intrapatient correlation and a dichotomous predictor of interest. This method can accommodate other predictors through 
a two-step procedure involving an initial regression analysis. Future work is needed to characterize the power of this 
approach relative to other methods and to study whether weighting strategies may be helpful in the situation where not 
all patients contribute the same number of data points to the analysis. 
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In light of these challenges, we set out to develop a computationally 
friendly approach that would allow us to keep the underlying repeated 
data structure intact. We describe an approach for assigning a valid 
p-value to the parameter estimate obtained by ordinary least squares
regression, when the predictor variable of interest is dichotomous (e.g.,
0/1, yes/no, etc.). Unlike typical inference in a regression framework,
our p-values are empirical, estimated from a reference distribution
formed by repeatedly reevaluating the test statistic for the dichotomous
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Materials and Methods
Under the null hypothesis, the values of a predictor variable 

(e.g., the labels of “case” or “control”) provide no information 
about the outcome variable [3]. Thus, non-parametric analysis of a 
dichotomous predictor variable and a continuous outcome variable 
may be made by comparing a true test statistic for the parameter of 
interest to a reference distribution formed by a resampling procedure 
that randomizes the data labels among subjects. A “permutation test” 
considers all rearrangements of the labels followed by recalculation of 
the test statistic to construct the reference distribution. For large data 
sets, complete enumeration is impractical, but Monte Carlo sampling 
of the rearrangements offers an asymptotically equivalent alternative. 
Formally, it is the property of “exchangeability” (i.e., that each possible 
permutation is equally likely under the null hypothesis) that allows 
the assignment of a p-value based on the proportion of reference 
distribution replicates exceeding the actual test statistic. 

This same procedure can be carried out for any other parameter 
estimates that involve only sums and sums of squares of outcomes. 
In our example, we are interested in comparing whether values in a 
case group decreases from baseline more than that in a control group. 
Thus, the key parameter is the group by time period (baseline vs. follow 
up) interaction term. Through matrix algebra, it can be shown that the 
parameter estimate for the interaction term is (∑Y0Bi / n0B - ∑Y0Fj / n0F) 
- (∑Y1Bk / n1B - ∑Y1Fl / n1F) with variance (1/n0B + 1/n0F + 1/n1B + 1/n1F) 
(Q – R0B – R0F – R1B – R1F)/(N - 4), where N = n0B + n0F + n1B +n1F, Q is 
the sum of all N squared outcomes, and R0B = (∑Y0Bi)

2/n0B and R0F, R1B, 
and R1F are defined analogously. 

Adjustment for additional explanatory variables is easily 
accommodated by performing a single initial regression of the outcome 
variable on all covariates except the dichotomous variable of primary 
interest. The residuals from this regression serve as the outcome 
variable in the 4-step regression procedure described above. Provided 
the initial regression is done only on subjects with non-missing values 
at the dichotomous variable of interest, the results (i.e., parameter 
estimate and test statistic for the dichotomous variable of interest) 
from this two stage procedure will be exactly the same as those from a 
single multiple regression model. 

To illustrate the Monte Carlo procedure, we apply it to a data set 
assembled to investigate the effect of a treatment change in patients 
undergoing hemodialysis. For patients with end-stage renal disease, 
dialysis is necessary to compensate for the loss of kidney function. 
Hemodialysis accomplishes this via a chemical solution called dialysate 
that interacts with the blood through a semi-permeable filter in a 
specialized machine called a dialyzer. One component of the dialysate 
solution is sodium, a cation known to increase blood pressure. The 
sample data set comprises 765 facilities of Fresenius Medical Care, 
North America. In 581 of these facilities, sodium decreased by 3 
mEq/L during January 2009-June 2009 (“transition period”) while 
the rest remained stable. For our purposes, we will focus on 629,452 
pre-dialysis measurements of systolic blood pressure in 39,313 subjects 
(28,211 from changer (“case”) facilities and 11,102 from non-changer 
(“control”) facilities). Given the switch to lower dialysate sodium, we 
test whether case facilities experience a larger decrease in systolic blood 
pressure (values during 6 month baseline vs. values during 24 month 
follow up) than control facilities. 

Results
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Figure 1: Monthly mean systolic blood pressure values for case facilities and 
control facilities.

Monthly mean values for systolic blood pressure are shown for 
case facilities and control facilities (Figure 1). One striking feature 
of this data is the clear pattern of seasonality, with highest mean 
systolic blood pressure during December/January and lowest during 
July. One approach to deal with this phenomenon and avoid the 
complication of intra-subject correlation is to look at a series of year 
over year comparisons (e.g., Jul 2008 vs. Jul 2009, etc). Using the data 
in this inefficient manner, we begin to see a consistently larger drop of 
systolic blood pressure in the case group relative to the control group, 
presumably due to the decrease in dialysate sodium, but the results 

1. Calculate the sum of outcomes and the sum of squared outcomes 
for each subject.

2. Use the expressions above to calculate the observed test statistic 
as the regression coefficient divided by the square root of its 
variance.

3. Apply Monte Carlo simulation by randomizing the labels of the 
dichotomous variable (at the subject level) and recalculating 
a reference distribution of the test statistics under the null 
hypothesis.

4. Assign a p-value to the observed test statistic equal to the 
proportion of times a more extreme test statistic occurs in the 
reference distribution.
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The test statistic in our case is the Z-statistic corresponding to a 
dichotomous variable from a regression analysis ignoring intrapatient 
correlation. This value is easily calculated even for large data sets using 
standard procedures such as bdLm in Splus. However, the prospect of 
carrying out the regression procedure repeatedly on the simulated data 
sets may be daunting. For example, at 5 seconds per replicate, 10,000 
replicates would take almost 14 hours to run and 100,000 replicates 
would take 10 times that amount. However, by taking advantage of 
the relatively simply form of the regression equations for the case of 
a single dichotomous predictor variable, a much quicker resampling 
algorithm can be applied. Specifically, the regression coefficient for a 
dichotomous predictor variable is equal to ∑Y1i /n1 - ∑Y0j /n0, where i 
and j index all n1 observed outcomes in case subjects and all n0 observed 
outcomes in control subjects. The variance terms is (∑Y1i

2 + ∑Y0j
2 - 

(∑Y1i)
2 /n1 - (∑Y0j)

2/n0)/n0 n1. From the perspective of the resampling 
procedure, the sufficient statistics for these two expressions are sums 
and sums of squares of the outcomes for each subject. Thus, an efficient 
resampling algorithm involves the following steps:



Page 3 of 4

are not statistically significant (Table 1). Similarly, no significant 
association was found if we aggregated data for each patient into a 
single mean baseline and single mean follow up value. 

If we ignore the issue of intrasubject correlation and naively 
include all monthly values into a single regression analysis (with pre-
adjustment for seasonality), we obtain an overall parameter estimate 
of -0.45, which is quite reasonable given the year-over-year results 
in Table 1. The corresponding Z-statistic of -3.59 would ordinarily 
result in a highly significant p-value, but the underlying assumption 
of independent errors is most likely violated due to intrasubject 
correlation. Thus, the Z-statistic must be judged according to a modified 
reference distribution, in our case, from Monte Carlo simulation.

The Monte Carlo reference distribution is nothing more than 
an empirical distribution of test statistics under the null hypothesis, 
conditional on the observed pattern of outcome data. If error terms 
are indeed independent, then the Monte Carlo reference distribution 
is equivalent to a random sample from a standard normal distribution. 
To show this, we constructed a reference distribution for comparing 
cases and controls in a single month (i.e., to completely avoid the 
intrasubject correlation issue) based on 10,000 replicates. We found 5% 
and 2.5% lower tail thresholds to be -1.647 and -1.963, very similar to 
the familiar -1.645 and -1.960 cutoffs derived from the standard normal 
distribution. 

The Monte Carlo reference distribution for the case group effect 
when all monthly values are considered has much greater variation 
than a standard normal distribution (Figure 2). Now, test statistics of 
-1.645 and -1.960 correspond to empirical p-values of 0.20 and 0.16, 
respectively (as opposed to 0.05 and 0.025), illustrating that traditional 
thresholds are not at all applicable to this correlated data. From this 
reference distribution, we find that the global parameter estimate of 
-0.45 with Z-statistic of -3.59 has an empirical p-value of 0.04. Thus, 
statistical significance, elusive in the year-over-year comparisons as 
well as with data aggregation, was achieved using the Monte Carlo 
procedure. 

Discussion
Large data sets with extensive longitudinal follow up can be a 

double edged sword for statisticians. On one hand, “longer” data sets 
(i.e., more subjects) enable the detection of smaller effects and “wider” 
data sets (i.e., repeated measurements) further enhance this ability and 
also allow for a fuller appreciation of the relationship over time. On 
the other hand, such data sets can also complicate the computational 

aspects of the analysis. For example, while the bigdata library in Splus 
provides functionality for ordinary linear regression, it does not 
include the ability to run generalized least squares regression or linear 
mixed models. Other platforms (e.g., SAS) may overcome this technical 
challenge in some instances, but trial runs with the data set described 
above were unsuccessful. 

Rather than embarking on an exhaustive quest to solve these 
computational limitations through different software, a bigger/faster 
computer, or better optimization, we decide to explore an alternative 
approach, one that assigns a valid p-value not through modeling a 
covariance matrix or treating repeated measurements as random 
effects, but rather through the generation of a null reference distribution 
using a common non-parametric technique. Specifically, we developed 
an algorithm that repeatedly randomizes the dichotomous predictor 
variable of interest (on a subject level) so that a set of representative 
values under the null hypothesis can be assembled. Importantly, 
we show how to accomplish this type of Monte Carlo simulation 
efficiently by working with sufficient statistics for each subject that can 
quickly manipulated for each replicate of the simulation. Without this 
simplification, the time needed to derive an empirical p-value would be 
prohibitively large. 

Year-over-year Case Group Effect* p-value
Jul 08 - Jul 09 -0.43 0.28

Aug 08 - Aug 09 -0.50 0.21
Sep 08 - Sep 09 -0.41 0.32
Oct 08 - Oct 09 -0.50 0.23
Nov 08 - Nov 09 -0.63 0.14
Dec 08 - Dec 09 -0.13 0.76
Jul 08 - Jul 10 -0.65 0.14

Aug 08 - Aug 10 -0.25 0.58
Sep 08 - Sep 10 -0.19 0.67
Oct 08 - Oct 10 -0.38 0.41
Nov 08 - Nov 10 -0.41 0.38
Dec 08 - Dec 10 -0.34 0.47

* A negative case group effect indicates that the case group decreased by a greater 
amount than the control group for the 1-year period under consideration.
Table 1: Effect of being a case relative to being a control for year-over-year 
comparisons.
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Figure 2: Monte Carlo reference distribution of Z-statistics for systolic blood 
pressure example.

We focused only on the case of a dichotomous predictor variable 
of interest, a critical assumption for the simplification described. 
However, our algorithm can be generalized to include any statistic that 
is a function of only sums and sums of squares of the outcome variable. 
Overall tests of categorical predictors as well as specific contrasts of 
such variables fall into this category. Although not ideal, a continuous 
predictor variable could be transformed to fit this paradigm by 
categorizing it into a discrete set of values (e.g., transforming age into 
<40, 40-50, 50-60, and >60). 

We also considered only the case of a continuous outcome variable. 
For a dichotomous outcome variable, exact logistic regression is 
theoretically possibly [4], but our simplified randomization algorithm 
based on sums and sums of squares cannot be easily adapted. We are 
currently developing an alternative procedure based on the Mantel-
Haenszel test statistic when predictor are categorical variables (or 
can be grouped as such). In this setting, the labels that define each of 
the substrata can be randomized and if working on the scale of log-
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relative to other methods such as generalized least squares regression, 
linear mixed models, or other non-parametric regression methods 
for correlated errors [6]. For example, the Monte Carlo procedure 
described may be criticized because individuals with incomplete 
data will contribute fewer observations to the overall test statistic. 
The linear mixed model, by contrast, models a single mean value for 
each subject and uses the repeat measurements to model the degree 
of variation within a subject. Further work is needed to understand 
how strongly this aspect of the Monte Carlo procedure impacts power 
in the presence of unbalanced data. We speculate, however, that a 
weighting scheme that assigns weights that are inversely proportional 
to the number of observations per subject may help to increase power 
in these situations. 

References

1. Kariya T, Kurata H (2004) Generalized Least Squares.  John Wiley & Sons 
Ltd., San Francisco. 

2. Verbeke G, Molenberghs G (2000) Linear Mixed Models for Longitudinal Data. 
Springer-Verlag, New York.

3.	

4. Mehta, CR, Patel NR (1995) Exact logistic regression: theory and examples. 
Stat Med 14: 2143–2160.

5. Silcocks P (2005) An easy approach to the Robins-Breslow-Greenland variance 
estimator. Epidemiol Perspect Innov 2: 9.

6. Opsomer J, Wang Y, Yang Y (2001) Nonparametric regression with correlated 
errors. Statist Sci 16: 134-153.

transformed odds ratio, all estimates and their variances are simple 
functions of counts within substrata [5]. 

Our application of a non-parametric technique was motivated 
by our large data sets that could not easily be handled by standard 
programs. Often, non-parametric methods are chosen for the 
opposite reason, because data sets are too small to rely on asymptotic 
approximations. Indeed, our approach is fully applicable to small data 
sets, although the simplification of working with sufficient statistics 
would probably be unnecessary. This approach could be useful if 
certain model assumptions were in doubt or if outliers are exerting a 
large amount of leverage on the regression results.

The Monte Carlo procedure that we have described will give a 
valid p-value, due to the property of exchangeability with regard to 
the permutation of dichotomous labels. Nevertheless, future work 
is required to determine the power of this non-parametric approach 

Good PI (2006) Resampling Methods. (3rdedn), Birkhauser, Boston.

In the case of a continuous outcome, adjusting for other 
variables, whether continuous, dichotomous, or categorical, is easily 
accommodated by a simple initial regression procedure including all 
of these variables. Owing to the simple closed-form equations in linear 
regression, using the residuals from this model in a second regression 
with the dichotomous variable of interest results in inference that 
is identical to the one which has all variables been added in a single 
regression model. Thus, the sufficient statistics are now sums and sums 
of squares of the residuals for the original regression and these need 
only be calculated one time. 
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