alexa
Reach Us +44-1904-929220
Elimination of Nickel from Aqueous Solution Using Actived Carbon and Biofilm | OMICS International
ISSN: 2161-0525
Journal of Environmental & Analytical Toxicology

Like us on:

Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Elimination of Nickel from Aqueous Solution Using Actived Carbon and Biofilm

Visit for more related articles at Journal of Environmental & Analytical Toxicology

Abstract

The main of this research was to study of the efficiency of using granular actived carbon (GAC), Biofilm and biological actived carbon (BAC) columns to treat low concentration of Nickel bearing water streams and the effects of temperature and pH on the adsorption isotherms. Studies were conducted to delineate the effect of pH, temperature, initial Ni and adsorbent concentration on adsorption of Ni2+ by GAC, BAC and Biofilm. Breakthrough curves for removal of 0.5 mg/L Ni2+ by GAC, Biofilm and BAC columns at two contact times were plotted. Batch adsorption and column data are compared, pH is shown to be the decisive parameter in Ni removal for GAC but not for BAC or biofilter. Lagergren plots confirms applicability of first-order rate expression for adsorption of Ni2+ by GAC, BAC and Biofilm.The adsorption coeficient(Kad) for BAC were 2-3 times greater than those with plain GAC. Bed Volumes of water containing 0.5 mg/L Ni2+ treated at breakthrough for GAC, Biofilm and BAC columns were 45 ml, 85 ml and 180 ml of Bed Volume respectively. BAC is more efficient than GAC in the removing of Ni from water environment.

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Article Usage

  • Total views: 11778
  • [From(publication date):
    November-2011 - May 23, 2019]
  • Breakdown by view type
  • HTML page views : 7985
  • PDF downloads : 3793
Top