Energy Deposition by Swift Hadrons in Mixed Gas Targets: The Mean Excitation Energy of Planetary Atmospheres

John R Sabin

1Institute for Physics, Chemistry and Pharmacology, University of Southern Denmark, Odense, Denmark
2Quantum Theory Project, Physics Department, University of Florida, Gainesville, Florida, USA

In many widely varying types of systems, energy is deposited by the collision of swift hadrons (typically H+ or He2+), with target molecules, resulting in the conversion of projectile kinetic energy to various types of energy in the target, through various processes. The ability to absorb energy from a hadronic projectile is referred to as the stopping power or linear energy transfer (LET), \(-\frac{dE}{dx}\), of the target species.

For a single component system, the stopping power for fast projectiles can be described in SI units by Bethe’s formulation [1].

\[
-\frac{dE}{dx} = n \frac{4\pi e^2 Z_i^2 Z_e}{mv^2} \ln \frac{2mv^2}{I_0}
\]

(1)

Here, \(n\) is the scatterer density, \(Z_i\) is the projectile charge, \(Z_e\) is the target electron number, \(v\) is the projectile velocity and \(m\) and \(e\) are the electron mass and charge, respectively. The quantity \(I_0\) is the mean excitation energy of the target, and is the single materials quantity that describes the ability of the target to absorb energy from a projectile [1]. It is obtained as the first energy weighted moment of the dipole oscillator strength distribution of the target [1,2].

\[
\ln I_0 = \int \frac{dE}{E} \frac{dE}{dE} \frac{ln E}{dE} \frac{dE}{dE}
\]

(2)

It should be noted that the complete dipole oscillator strength distribution of the target, including all discrete and continuous transitions, is required.

In many situations, however, such as planetary atmospheres, [1] plasmas and warm, dense matter, the target can be composed of various components with various scatterer densities. In order to treat the stopping power of such a mixture, providing the components are non-interacting, each component would be treated separately and the results summed, as

\[
-\frac{dE}{dx} = \sum_{i=component} \left(\frac{dE}{dx} \right)_i
\]

(3)

However, it would be more convenient to treat the mixture as a single substance as in eq.1, with its own mean excitation energy, \(I_{mix}^{0}\).

The stopping power for the mixture as a whole for a projectile of charge \(Z_i\) would then be

\[
\left(-\frac{dE}{dx} \right)_{mix} = n_{mix} \frac{4\pi e^2 Z_i^2 Z_e}{mv^2} \ln \frac{2mv^2}{I_0^{mix}}
\]

(4)

Here, \(n_{mix}\) is a density of scattering centers, where \(n_{mix} = \sum n_i\).

\(Z_{mix}\) is the weighted average of the number of electrons per scatterer,

\[
Z_{mix} = \frac{\sum n_i Z_i}{n_{mix}}
\]

and \(I_0^{mix}\) is the mean excitation energy appropriate to the mixture. Such treatment would derive from a sum of stopping powers of the components, weighted by their relative density of scattering centers, as in eq. 3.

\[
\left(-\frac{dE}{dx} \right)_{mix} = \sum n_i \frac{4\pi e^2 Z_i^2 Z_e}{mv^2} \ln \frac{2mv^2}{I_0^{i}}
\]

(5)

Equating equations 4 and 5, one obtains

\[
\ln I_0^{mix} = \frac{\sum n_i Z_i \ln I_0^{i}}{\sum n_i Z_i}
\]

(6)

Thus, the mean excitation energy of the mixture of non-interacting components is simply the appropriate weighted average of the mean excitation energies of those components.

Applying the foregoing to the constituents of the atmospheres of the solar planets [5] and using the standard molecular mean excitation energies of Janni [6], a single mean excitation energy for each of the solar planetary atmospheres can be calculated. The molecular mean excitation energies used were: \(I_0^{CO} = 39.10eV\), \(I_0^{HI} = 20.40eV\), \(I_0^{CH} = 115.7eV\) and \(I_0^{Ar} = 102.35eV\).

Thus, the results for the mean excitation energies of the atmospheres for the solar planets are given in the Table 1.

It should be noted that trace atmospheric components (<1%) were not included, as inclusions make very small differences in the mean excitation energies of the atmosphere, and even smaller differences in the values of \(I_0\), which is the quantity that governs energy deposition by swift, massive particles in the atmospheres. For example, the mean excitation energy for Earth’s atmosphere, without including the 1% Ar is 101.89 eV, leading to a difference of 0.59 in \(I_0\) and 0.006 in \(ln I_0\).

Thus, energy deposition by auroral hadrons in planetary atmospheres, such as, for the many newly discovered Goldilocks planets, may be accurately estimated from the projectile flux and planetary composition.

*Corresponding author: John R Sabin, Quantum Theory Project, Physics Department, University of Florida, Gainesville, Florida, USA, E-mail: sabin@qtp.ufl.edu

Received November 12, 2013; Accepted November 15, 2013; Published November 19, 2013

Copyright: © 2013 Sabin JR. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Table 1: Mean excitation energies of the atmospheres of the solar planets

<table>
<thead>
<tr>
<th>Planet</th>
<th>Atmospheric composition</th>
<th>I_x (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>98% He 2% H$^+$</td>
<td>38.59</td>
</tr>
<tr>
<td>Venus</td>
<td>96.5% CO$^+_2$ 3.5% N$^+$</td>
<td>102.24</td>
</tr>
<tr>
<td>Earth</td>
<td>78.1% N$^+_2$ 20.9% O$^+_2$ 1% Ar</td>
<td>102.48</td>
</tr>
<tr>
<td>Mars</td>
<td>95.3% CO$^+_2$ 2.7% N$^+_2$ 2% Ar</td>
<td>103.25</td>
</tr>
<tr>
<td>Jupiter, Saturn, Uranus, Neptune</td>
<td>89% H$^+$ 11% He</td>
<td>24.43</td>
</tr>
</tbody>
</table>

References

5. National Space Science Data Center’s Fact Sheet.