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Abstract

Chromatin is subject to proofreading and repair mechanisms during the process of DNA replication, as well 
as repair to maintain genetic and epigenetic information and genome stability. The dynamic structure of chromatin 
modulates various nuclear processes, including transcription and replication, by altering the accessibility of the DNA 
to regulatory factors. Structural changes in chromatin are affected by the chemical modification of histone proteins 
and DNA, remodeling of nucleosomes, incorporation of variant histones, noncoding RNAs, and nonhistone DNA-
binding proteins. Phenotypic diversity and fidelity can be balanced by controlling stochastic switching of chromatin 
structure and dynamics in response to the environmental disruptors and endogenous stresses. The dynamic 
chromatin remodeling can, therefore, serve as a sensor, through which environmental and/or metabolic agents 
can alter gene expression, leading to global cellular changes involving multiple interactive networks. Furthermore 
its recent evidence also suggests that the epigenetic changes are heritable during the development. This review 
will discuss the environmental sensing system for chromatin regulation and genetic and epigenetic controls from 
developmental perspectives. 

Keywords: Chromatin assembly; Chromatin regulation; Endocrine-
disrupting chemicals; Environmental stress; Epigenesis; Epigenetic 
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Introduction
Although many genetic and epidemiologic studies have indicated 

that genetic variation strongly influences disease susceptibility, 
exposure to environmental factors clearly affects the onset, progression, 
and severity of germ-related and inflammatory diseases [1-3]. In fact, 
recent epidemiologic studies have identified a variety of risk factors 
for the development of many common diseases. Among them, air 
pollution, fuel exhaust, smoking, Polycyclic Aromatic Hydrocarbons 
(PAHs), volatile organic chemicals and environmental disrupting 
chemicals (EDCs) have been suggested as the culprit in triggering or 
exacerbating diseases [4-6]. The most commonly studied EDCs are 
dichlorodiphenyltrichloroethane (DDT), polychlorinated biphenyls 
(PCBs), polybrominated diphenyl esters (PBDEs), phthalates, and 
bisphenol A (BPA). This has been exemplified clearly by several 
recent meta-analyses of residential environmental chemicals and the 
occurrence primarily of allergic and immunological diseases [7]. These 
findings are particularly relevant when the increase in the prevalence of 
allergic and immune diseases in industrialized countries over the last 
decades is taken into consideration. One intriguing hypothesis is that the 
expression and increased prevalence of these diseases are attributable 
to these new immune “adjuvant” factors, e.g., environmental chemicals 
such as EDCs [8].

In the context of chemical carcinogenesis, direct damage of DNA 
by these environmental disruptors (or genotoxic agents) is the primary 
mechanism of chemical carcinogenesis. The maintenance of genome 
integrity in eukaryotes involves several damage-surveillance and 
DNA-repair enzymes. Similar to the gene-expression machinery, these 
enzymes must operate within the repressive chromatin environment 
of the nucleus [9,10]. DNA damage induced by genotoxic agents that 
modify DNA bases covalently or generate single-stranded DNA breaks 
are primarily recognized and repaired by DNA excision repair pathways 
[11]. In a manner that is analogous to the chromatin decomposition 
that accompanies the recruitment of RNA polymerase II during gene 

activation, DNA excision repair is associated with increased histone 
acetylation and localized chromatin remodeling [9]. Establishing the 
extent to which particular environmental disruptors influence genome 
function is an essential first step in defining their potential effects on 
the long-term viability of the target organism. If an environmental 
disruptor can induce an epigenetic change that is heritable through 
mitosis, and persists even in the absence of the original factor, there 
is a potential for significant phenotypic effects long after the initiating 
factor has disappeared. Furthermore, if such mitotically heritable 
changes are induced in germ cells, then the transmission through 
meiosis to succeeding generations might be possible. It is well known, 
through many years of work on imprinted genes, that epigenetic effects 
(i.e., whether a gene is expressed or not without the change in DNA 
sequences) can be transmitted through the germ line [12,13].

In this review, mechanisms via which environmental disruptors 
impact genome function through chromatin regulation in higher 
eukaryotes are discussed. We focus on molecular mechanisms that 
operate through families of enzymes that modify chromatin and 
chromatin-associated proteins. We also introduce recent advances 
in the study of environmental toxicant-mediated dysregulation of 
chromatin assembly, and discuss how an environmental agent might 

Jo
ur

na
l o

f C
arc

inogenesis &Mutagenesis

ISSN: 2157-2518

Journal of Carcinogenesis &
Mutagenesis



Volu 5 • Issue 1 • 1000156
J Carcinog Mutagen 
ISSN:2157-2518 JCM, an open access journal 

Citation: Fang L, Wuptra K, Chen D, Li H, Huang SK, et al. (2014) Environmental-stress-induced Chromatin Regulation and its Heritability. J Carcinog 
Mutagen 5: 156. doi:10.4172/2157-2518.1000156

Page 2 of 8

induce a change in gene expression that is heritable through mitosis 
(epigenetic mutation), or even through the germ line, to subsequent 
generations. 

Chromatin Landscapes
Epigenetic modifications in response to environmental disruptors 

include histone modifications, DNA methylation, ATP-dependent 
chromatin remodeling, and dysregulated microRNAs [14]. The histone 
modifications were separated into distinctive clusters, indicating their 
relations to different genome features. For example, modifications 
associated with active promoters (H3K4me3 and H3K9ac), transcribed 
regions (H3K36me3), and distal elements (H3K4me1 and H3K27ac) 
were correlated with one another but showed varying degrees of 
exclusivity, with repressive marks for H3K27me3 and H3K9me3 [9]. It 
is becoming increasingly clear that a variety of environmental factors 
change gene expression through shifting covalent histone modification 
profiles. For example, exposure to BPA, an endocrine disruptor, in 
human breast cancer MCF7 cells and mammary glands of six-week-old 
mice, has been shown to increase the levels of H3K27me3, which is 
associated with gene silencing [15]. Most carcinogenic metals change 
genome function by epigenetic mechanisms. A nontoxic dose of nickel 
is shown to increase global levels of H3K4me3 and H3K9me2 [16]. 
Moreover, acute nickel exposure increases levels of H3K9me1 and 
H3K9me2 in several cell lines [17]. Recently it has been demonstrated 
that nickel exposure alters global levels of H3K4me3 and H3K9me2 in 
nickel-exposed refinery workers [18]. These modifications are catalyzed 
by chromatin-modifying enzymes.

Environmental factors appeared to alter the histone modifications 
at least in part by directly regulating the levels and/or activities of histone 
modifying enzymes. For example, hypoxia and exposure to nickel 
increased the level of H3K9me2 by inhibiting histone demethylase 
JMJD1A [19]. Moreover, hypoxia and hypoxic mimetic increased the 
protein and enzymatic activity of G9a, a H3K9 methyltransferase [20]. 
Interestingly, chromatin-modifying enzymes are generally susceptible 
to the cellular microenvironment, i.e., the levels of various metabolites. 
The NAD-dependent class III deacetylase SIRT1 acts on both histones 
and transcription factors, such as p53 [21] and the androgen receptor 
[22], thus providing an interesting link with the cellular metabolic 
state of the cell [23,24]. A high NAD/NADH ratio enhances SIRT1 
activity, with deacetylation of the androgen receptor and diminution 
of its growth-promoting activity. Conversely, low levels of NAD, or 
high levels of the inhibitor (and SIRT product) nicotinamide suppress 
SIRT1 and may act as a sensor of the redox state of the cells [25]. 

5-Methy-cytosine (5meC) represents 2-5% of all cytosines in 
mammalian genomes and is found primarily on CpG dinucleotides 
[26]. DNA methylation regulates many cellular processes including 
chromatin structure remodeling, X-chromosome inactivation, genome 
imprinting, chromosome stability, and gene transcription [12,27]. In 
general, hypermethylation of the promoter of a gene is associated with 
decreased expression of that gene [28]. Conversely, hypomethylaiton 
associated with a noncoding region has been linked to chromosome 
instability [29]. Alterations of DNA methylation patterns, such as global 
hypomethylation and hypermethylation of CpG islands in promoter 
regions, have been found increasingly in different types of tumors. 
Exposure to a variety of environmental disruptors can alter DNA-
methylation patterns. For example, oxidative stress has been associated 
not only with global hypomethylation, but also with increasing 
dense methylation of specific genes [30]. These changes could result 
in aberrant genome stability and gene expression, thereby leading to 

cell transformation and tumorigenesis. DNA methylation may also 
contribute to environmental tumorigenesis through dysregulating 
microRNA expression, since the expression of microRNAs are also 
reported to involve DNA methylation mediated by exposure to 
environmental disruptors, such as dichlorvos (DIC) [31], conazoles 
[32], and arsenic [33]. 

In addition to histone modifications and DNA methylation, 
chromatin could be remodeled through ATP-dependent chromatin 
remodeling factors to either activate or silence a gene. Nucleosome 
positions regulate DNA accessibilities and play important roles in 
DNA-dependent processes. ATP-coupled chromatin remodeling 
complexes controls nucleosome positions by translocating 
nucleosomes or evicting them from the DNA. A number of studies 
have shown roles of ATP-dependent chromatin remodeling factors 
in responding to environmental stresses. SWI3B [Imitation of SW 
(Switch) 3B] is a subunit of Arabidopsis SWI/Sucrose Non Fermentable 
(SNF) complexes. Swi3b mutants abolished the presence of a key 
regulator of anscisic acid (ABA) signaling in the vicinity of ABA-
response genes, and reduced their expression [34]. PICKLE (PKL) 
is the chromodomain and helicase-like domain (CHD) ATPase in 
Arabidopsis, which inhibits expression of some ABA-response genes. 
Perruc et al. [35] reported that pkl mutants reduced the levels of histone 
repressive marks at promoters of some genes upon ABA treatment, 
indicating that PKL is necessary to maintain chromatin of these genes 
in a repressed state. There are a number of different types of remodeling 
complexes in mammalian cells with specific functions. These complexes 
translate a variety of signals into certain patterns of nucleosome 
positions. Environmental genotoxins cause a variety of DNA lesions, 
which if not repaired properly, can lead to cancer. Growing evidence 
has suggested that ATP-dependent chromatin remodeling factors 
play important roles in the DNA-damage response. Many different 
types of remodelers including ISWI and WICH [WSTF (the Williams 
syndrome transcription-factor)/ISWI chromatin remodeling] complex 
are recruited to DNA damage sites upon genotoxic exposure [36,37]. 
ISWI complexes influence access of repairing factors to DNA by 
translocating nucleosomes. Moreover, they also serve as a docking 
or signaling site for repair and signaling proteins. For example, ISWI 
subunit Acf1 recruited Ku70/80 complex to the repair site, and WICH 
subunit WSTF protein phosphorylated H2A.X, which served as a signal 
for downstream reactions [38]. These studies indicate significance of 
ATP-dependent remodeling factors in regulating chromatin structure 
in responding to different environmental cues, while the molecular 
mechanisms involved in the process need further investigation. It 
would be interesting to examine if environmental disruptors modulate 
chromatin structure by directly targeting ATP-dependent chromatin 
remodelers. 

Chromatin Assembly
Epigenetic mechanisms give rise to different patterns of gene 

expression and define cell fate in multicellular organisms. Growing 
evidence shows that environmental factors can change epigenetic 
profiles through covalent chromatin modifications, such as DNA 
methylation and posttranslational histone modifications, thereby 
changing gene expression and cellular phenotype. In addition to 
chromatin modifications, proper assembly and disassembly of 
chromatin itself are also crucial, as they ensure the maintenance 
of epigenetic information, and control DNA accessibility, genome 
instability, and transcription. Nucleosomes can be assembled in a 
replication-coupled or replication-independent manner. Canonical 
histone H3 (H3.1 and H3.2 in mammals) is assembled into chromatin 
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solely during S phase, after DNA replication via a replication-coupled 
mechanism [39,40]. However, variant histone H3.3, which differs from 
canonical H3 by four or five amino acids, is deposited throughout 
the cell cycle in a replication-independent manner [39,40]. Histone 
chaperones bind to histones and regulate histone dynamics, such as 
transfer, transport, or storage, thereby modulating chromatin assembly 
[41]. Thus, histone deposition is assisted by chaperone proteins. For 
example, canonical histone H3 is incorporated into chromatin by 
chromatin assembly factor 1 (CAF-1) during DNA replication [42], 
whereas several histone chaperones, such as HIRA [43], death-domain 
associated protein (DAXX), α-thalassaemia/mental retardation 
syndrome X-linked (ATRX), and DEK, are responsible for the delivery 
of variant histone H3.3 into different genomic loci [44-47]. Among 
them, HIRA mediates H3.3 loading onto genetic regions and some 
regulatory regions, and DAXX directs H3.3 deposition at regulatory 
regions, and DAXX and ATRX are tightly associated with H3.3, and 
ATRX targets DAXX to telomeres and pericentric heterochromatin 
in MEFs. In Drosophila, dDEK is found to be preferentially associated 
with histones enriched with active epigenetic marks, and facilitates 
H3.3 assembly during puff formation. 

In addition to histone chaperones, appropriate covalent 
modifications of nascent histones H3 and H4 play critical roles 
in histone nuclear import and assembly into chromatin. Newly 
synthesized histones H3 and H4 are acetylated before being assembled 
into chromatin. H4K5 and H4K12 are acetylated by the type B histone 
acetyltransferase Hat1. H4K5 and H4K12 acetylation regulates 
the interaction between H3/H4 and importin 4, which is a nuclear 
transport receptor, and another chaperone anti-silencing function 
1 (ASF1) [48-50]. Mutations in H4K5 and H4K12 lead to impaired 
nuclear translocation compared with wild-type histones [51,52]. 
Moreover, histone H4 associated with the Hat1 complex is noted to 
harbor acetylation at the K91 residue located in its globular domain 
[53]. Mutation at this site yields phenotype changes, such as sensitivity 
to DNA damage and derepression of silent chromatin, when chromatin 
assembly is defective [53]. In yeast, acetylation of five lysine residues at 
H3 (K9, K14, K23 and K27) and the modifying enzyme, Gcn5, facilitate 
nucleosome assembly [50]. In Drosophila, truncation mutation of the 
N-terminal tail of H3 compromised replication-coupled nucleosome 
assembly, indicating that the role of the N-terminal tail of histone H3 
in acetylation appears to be conserved among different species [39]. 
Moreover, H3K56 acetylation is important for nucleosome assembly 
during DNA replication and repair, both in budding yeast and humans, 
at least in part by enhancing the interaction between CAF-1 and H3/
H4 [51,52,54-56]. 

Alteration of Chromatin Assembly by EDCs
Abnormal chromatin assembly may be a cause of, or a significant 

contributor to the pathogenesis of various diseases, such as cancer 
[57]. Most direct evidence has come from recent deep-sequencing 
that showed mutations in the DAXX–ATRX–H3.3 pathway in 
several cancers [58-63]. Somatic mutations in the H3.3–ATRX–
DAXX chromatin-assembly pathway have been identified in 44% of 
pediatric glioblastoma tumors, suggesting that these mutations might 
be “driver” mutations for this type of cancer [60]. Moreover, 43% of 
pancreatic neuroendocrine tumors (PanNETs) had mutations in genes 
encoding ATRX and DAXX [62]. ATRX/DAXX is important for H3.3 
deposition at telomeres. Not surprisingly, PanNETs containing ATRX/
DAXX mutations exhibit abnormal telomeres. A DAXX missense 
mutation was also found in acute myeloid leukemia [64]. Given the 
role of DAXX in PML-RARα-driven transformation [65], aberrant 

H3.3 deposition may also play a role in the pathogenesis of leukemia. 
Overexpression of another histone H3.3 chaperone, DEK, has been 
detected in several cancers, which facilitates epithelial transformation 
[66]. In some human myeloid leukemia patients, DEK is fused to CAN 
by chromosomal translocation and its mutation is found to significantly 
reduce the formation of the DEK complex and H3.3 loading [46,67]

Although it is becoming increasingly apparent that chromatin 
assembly is directly associated with cancer initiation and development, 
little is known about the effects of the environment on chromatin-
assembly pathways. In plants, different abiotic stresses are known to 
downregulate the expression of histone chaperones, suggesting that 
aberrant nucleosome assembly is involved in the regulation of stress 
responses, although the mechanisms underlying this process have not 
been clarified [68]. Whether and how environmental factors influence 
the posttranslational modifications (PTMs) of newly synthesized 
histones and histone chaperone proteins, thereby leading to changes 
in nuclear import and chromatin assembly, remains largely unknown.

In an attempt to understand the epigenetic mechanisms that 
control acrolein (Acr) pathogenesis, we recently found that interfering 
with chromatin assembly may represent a major mechanism via which 
Acr functions. Acr is an α,β-unsaturated aldehyde that is abundant in 
the environment. It is derived from automobile exhaust and industrial 
emissions and is enriched in tobacco smoke and heated cooking oil 
[69-72]. Acr has been implicated in the development of multiple 
sclerosis, Alzheimer’s disease, pulmonary disorders, cardiovascular 
diseases, among others [69,72-84]. Specifically, Acr has been noted 
as a potential major carcinogen associated with smoking-related 
lung cancer [70,78]. While PAHs have long been considered the 
major carcinogens in tobacco smoke [85], because they are linked 
to p53 mutational patterns in lung cancer. This notion has recently 
been challenged by our finding that Acr, which is 1000-fold more 
abundant than PAHs in tobacco smoke, also binds preferentially to 
p53 mutational hotspots [70]. As a highly reactive aldehyde, Acr not 
only reacts with nucleophilic guanine bases in DNA [24,70,78,85-87], 
but, in theory, it may target multiple amino acid residues, including 
lysine, within susceptible proteins [69,88]. By using antibodies against 
cyclic lysine adducts, several studies reported the formation of Acr–
lysine adducts in vivo in the affected tissues of individuals with several 
degenerative diseases [89]. As histone proteins are rich in lysines, it 
raises the possibility that Acr also targets lysine residues in histone 
tails, thereby affecting their PTMs. Because appropriate histone lysine 
modifications are crucial for genome function [90], the formation of 
Acr-histone adducts is expected to have a significant impact on cellular 
processes. In fact, we have shown that Acr reacts with histone proteins 
and specifically downregulates the acetylation of the N-terminal tails 
of cytosolic histones H3 and H4 [91] (Figure 1). The reduction of 
histone acetylation appears not to be because of the changes in histone 
acetyl transferase (HAT) expression and/or activity, as the expression 
of HAT1, which is specific for H4K5 and H4K12 acetylation, was not 
changed by Acr exposure, and also the in vitro total HAT activity of 
cytosolic fractions from Acr-treated cells was not altered compared 
with that from wild-type cells (data not shown). As mentioned above, 
appropriate acetylation of the N-terminal tails of newly synthesized 
histones H3 and H4 is believed to be important for histone nuclear 
import and nucleosome assembly [48,51,52,54,55,92-94]. In fact, Acr 
exposure led to a compromise of chromatin assembly. This conclusion 
was supported by the following results. The levels of histone H3 marked 
with H3K9 and K14 acetylation were drastically decreased after Acr 
exposure at the majority of genomic loci tested. The results seemed not 
to be due to a direct reaction of Acr with nucleosomal histones, because 
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H3K4me3, which is another active mark, was not downregulated 
in parallel. Moreover, while γ-tubulin levels were not changed, the 
amount of H3 in chromatin fractions was depleted by Acr exposure. 
Importantly, Acr treatment facilitated the accessibility of chromatin, 
as evidenced by partial MNase digestion assays. In the future, it would 
be interesting to test whether Acr exposure disrupts the associations 
of H3/H4 with nuclear import and histone chaperone proteins. Acr 
may also target histone chaperones, thereby changing the chromatin 
assembly pathway [95]. Although the expressions of the CAF-1 p150 
subunit, importin 4, and ASF1 were not affected by Acr exposure (data 
not shown), whether Acr may modify these proteins and affect their 
functions need to be determined.

Because of their similar chemical properties, we further determined 
whether other aldehydes, such as formaldehyde and acetaldehyde, also 
react with nascent histones and influence chromatin assembly. We 
found that both formaldehyde and acetaldehyde specifically reduce 
the acetylation of cytosolic histones and compromise histone delivery 
similar to Acr (data not shown). Thus, the regulation of chromatin 
assembly appears to be a common characteristic of aldehydes. Other 
electrophiles, such as metabolically activated PAHs and alkylating 
agents, may also have similar effects. Moreover, Acr can be generated 
endogenously by oxidative stress, which occurs often in cells exposed 
to environmental agents [69,71,72]. Thus, reaction with free histones, 
which regulate the thereby regulating nucleosome-assembly pathway, 
may represent an important mechanism via which a wide range of 
environmental factors interact with the genome and influence genome 
functions. 

Heritable Implication of Cell Memory and Germ line 
If mitotically-heritable epigenetic changes are induced in germ 

cells, then there is a possibility for transmission of epigenetic changes 
through meiosis to the succeeding generations. Imprinting genes are 
well known in this category, although the underlying mechanisms 

remain unclear [12]. DNA methylation is likely to be involved, but 
seems not to provide a complete explanation. Attempts to demonstrate 
experimentally the germ-line inheritance of induced phenotypic 
changes have met with difficulties. Transmission through the male 
germ line presents particular problems for epigenetic inheritance. 
During fertilization, sperm DNA is repackaged with maternal histones, 
followed by an overall loss of methylated cytosine. However, it is 
likely that some regions, such as imprinted genes, are protected from 
demethylation [96], while careful analyses have shown retention of a 
small amount of histone in sperm chromatin [97], with enrichment of 
selected variants, such as H3.3 and H2A.Z [98]. Thus, sperm histones 
are associated with specific genes, perhaps with those that need to 
be expressed very early in zygotic development [99]. Although we 
acknowledge the complexity and experimental challenges of research 
on epigenetic inheritance, further efforts are certainly required. If 
environmental disruptors can induce a heritable change in, for example, 
histone modification in somatic cells, then it is likely that this can also 
happen in germ cell precursors and be transmitted to the germ-cells 
themselves and, thence, to the zygote. Effects on the developmental 
embryo and the adult organism will depend on the genes involved, 
but still it remains unclear. Figure 2 summarizes how a mitotically-
inheritable epigenetic change, induced during the preimplantation 
stage of embryogenesis, can be transmitted to germ cells and to the next 
generation. The most sensitive period to the environmental stresses in 
the epigenetic inheritance of the early embryonic development might 
be between the 8-cell morula embryo stage and the blastocyst stage, 
based on studies of the HDAC inhibitor valproic acid [100]. The 
same environmental disruptors will usually cause selective epigenetic 
changes at multiple loci or gene clusters and, especially, both alleles of 
each susceptible gene will be affected equally. 

In primordial germ cells (PGCs), there is extensive erasure of 
epigenetic marks [101,102]. The newly induced epigenetic change 
must survive this if it is to be passed to the next generation. Currently 
it is impossible to say how frequently this may occur. However, the 
epigenetic marks that determine the zygotic expression of imprinted 
genes depending on whether they have been passed through the maternal 
or paternal germ line, survive this erasure process. Moreover, there is 
extensive demethylation of DNA in the zygote and preimplantation 
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influenced by other H3 modifications, including acetylation, exerting 
an indirect effect on DNA methylation. In some organisms, the 
methylation of H3 at K9 or K36 can also influence the levels or sites of 
DNA methylation. Metabolic or environmental components that shift 
the equilibrium that is maintained by one or more of these enzyme 
cycles, can potentially alter the local levels of DNA methylation. In 
higher eukaryotes, DNA methylation occurs at the cytosine(s) of CpG 
dimers. The slow, but inevitable, deamination of 5’-methyl cytosine 
(meC) from thymidine (T), results in a G–T base mismatch, the repair 
of which may involve the replacement of either base. The deamination 
of cytosine forms uracil, which is invariably replaced. Replacement of 
the G with an A results in an altered DNA sequence on both strands, 
in which the original meC is replaced with T. Such a change might 
have phenotypic effects, even if it does not occur in a coding region or 
at transcription factor binding sites. Both nucleosome positioning and 
binding of DNA methyltranferases are dependent on DNA sequence, 
although the sequences involved are complex. Over evolutionary time, 
localized changes in DNA sequences, perhaps through their effects on 
nucleosome positioning and Dnmt binding, might result, eventually, in 
a region of silencing that is determined genetically by DNA sequence, 
rather than epigenetically, as originally proposed [108]. 

Conclusions 
The idea that acquired traits induced by environmental conditions 

may become heritable dates back to Lamarck and has been controversial 
ever since [109]. Over the past century, many studies have attempted 
to demonstrate that parental environment can influence directly the 
phenotype and fitness of the offspring; however, it is still not conclusive 
in the animal world. The activity of chromatin modifying enzymes can 
be influenced by a range of metabolites whose levels can be influenced 
by diet and lifestyle, by a variety of environmental chemicals, and by 
climatic changes, amongst other factors. The changes induced can be 
widespread, affecting all or most members of a population, and rapid, 
occurring in parallel with exposure to the inducing agent. It may 
also be significant that epigenetic changes would be able to regularly 
affect multiple, possibly functionally related, genes and gene families, 
depending on how the enzymes involved are targeted. The persistence 
of the environmental agent that induces the epigenetic changes 
would give natural selection time to act on the altered phenotype 
without a need for the heritability of the induced changes. All these 
characteristics argue that induced epigenetic changes can make a 
significant contribution to evolution. 

The response of any individual organism to an environmental 
disruptor will depend on the families of chromatin-modifying enzymes 
involved and their ability to metabolize or otherwise deal with the 
disruptors. Genetic polymorphism generated by a combination of 
genetic and epigenetic mechanisms may have selectable phenotypic 
consequences. The question remaining regards the determination 
of the extent to which environmentally induced epigenetic changes 
can contribute to the pool of variants on which natural selection 
operates. Such mechanisms not only have long-term implications for 
evolutionary changes themselves, but are of immediate relevance to 
human and animal health. 
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embryo [103], which may erase some epigenetic marks. However, this 
erasure should not be complete and even marks that are dependent 
on DNA methylation may survive. Then, this epigenetic inheritance 
will be transmitted to the next generation. The current model involves 
an epigenetic transgenerational inheritance of a behavioral phenotype 
induced by environmental disruptors [104,105] that is transmitted 
through the germ line and involves a permanent alteration in the sperm 
epigenome (i.e., DNA methylation). The epigenetic transgenerational 
inheritance of this altered sperm epigenome modifies the subsequent 
development and epigenomes of all cells and tissues, including the brain, 
to promote phenotypic variation [106]. Although no direct epigenetic 
measurements were made in the current study, the epigenetic model 
and role of epigenetics in development provide the molecular basis of 
the observations presented [107]. 

Speculation Regarding the Events that Link 
Environmental Factors to Genomic Change 

A possible flow chart of how an environmentally-induced epigenetic 
change might alter a DNA sequence is summarized in Figure 3. High 
levels of H3K4 methylation protect DNA in chromatin from cytosine 
methylation at CpG dimmers, and the levels of H3K4 methylation are 

Altered DNA sequences 

Nucleosome positioning Dnmt binding 

meDNA 

me C 

[Misrepair ] [Deamination] 

H3K4me3 H3K4 H3K9/36 H3K9/36me3 

EDCs EDCs 

HDACi 

H3K9/14Ac 

[Gene Expression] [Gene Silencing] 

Figure 3: How an environmentally-induced epigenetic changes might alter 
DNA sequence. The chain of events shown is speculative but the individual 
elements are all based on established mechanisms. The process starts with 
inhibition of demethylases of H3K9me3 and H3K37me3 as well as methylase 
of H3K4me3 in chromatin by environmental disrupting chemicals (EDCs). 
These results increase in H3K9me3, H3K36me3 and HeKme3, which may be 
global or local depending on the distributing enzymes. Then, H3K9me3 and 
H3K4me3 can modulate to activate or repress DNA methyltransferases (Dnmt), 
leading to increase or decrease of DNA methylation. In higher eukaryotes, DNA 
methylation occurs at the cytosine of CpG dimers. The slow, but inevitable, 
deamination of 5’ methyl cytosine (meC) forms thymidine (T), resulting in a 
G-T base mismatch, repair of which involve replacement of either base. 
Replacement of the G with an A results in an altered DNA sequence on both 
strands, in which the original meC is replaced with T. Such a change could 
exert phenotypic changes, even if it does not occur in a coding region or 
transcription factor binding sites. Both nucleosome positioning and binding of 
DNA methyltransferases and DNA demethylase are known to be dependent 
on DNA sequences, through the sequences involved are complex. Histone 
deacetylase inhibitor (HDACi) is also affective to the state of acetylation of 
H3K9 or H3K14, which causes to stimulate the trimethylation of H3K4. Over 
evolutionary time, localized changes in DNA sequences might result eventually, 
in a region of silencing or activating determined genetically by DNA sequence, 
rather than epigenetically.
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