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Introduction
Cancer is a complex disease that involves genetic and epigenetic 

changes. The World Health Organization (WHO) has identified several 
approaches to fight cancer including prevention, early detection and 
comprehensive treatment plans for patients with advanced disease 
[1]. Epigenetic therapy is a novel therapeutic approach that modulates 
gene expression by targeting the DNA methylation machinery, 
histone covalent modifications or microRNAs (miRNAs). Drugs 
targeting DNA methylation (5-azacytidine and decitabine) and histone 
acetylation (vorinostat, romidepsin) are currently FDA approved for 
the treatment of myelodysplastic syndromes (MDS) and Cutaneous 
T-Cell Lymphoma (CTCL), respectively. On the other hand, drugs
targeting miRNAs and other histone covalent modifications are still
under development. Several epigenetic agents demonstrated efficacy as
chemo preventive agents, adding another dimension for their future use 
in medicine. This review will discuss the recent advances in epigenetic
therapy and a future perspective for the use of epigenetic modifiers in
the treatment of other diseases.

DNA Methylation Inhibitors
The methylation of cytosine bases in CpG dinucleotides was the 

first described covalent DNA modification. This modification was 
the focus of extensive research studies after recognizing the inverse 
relation between promoter DNA methylation and gene expression 
[2-4]. In normal mammalian cells genome, CpG islands exist in the 
proximal promoter regions of almost half of the genes and are usually 
unmethylated [5]. However, DNA repeat sequences, centromeres, 
telomeres and inactive X-chromosomes are methylated in normal cells 
[6]. On the contrary, tumor cells show an opposite pattern with increased 
gene promoter hypermethylation and decreased global methylation. 
Recent advances in DNA sequencing technology facilitated a more 
detailed genome wide comparisons of the DNA methylome in normal 
and tumor cells and discovered additional methylation changes in other 
genomic regions like CpG shores within the gene body and in gene 
promoters of non coding RNA [7]. 

Other than the spontaneous deamination of 5-methylcytosine into 
uracil, DNA methylation was considered an irreversible modification 
for a long time. Earlier reports claimed the existence of a mammalian 
demethylase specific for methylated CpGs [8,9]. Recently, the 

discovery of the 5-hydroxymethylcytosine (5hmC) modification 
altered this concept and proved that 5-methylcytosine is metabolized 
by hydroxylation into 5hmC by a family of enzymes known as ten-
eleven translocation (TET1-3) [10,11]. Further oxidation of 5hmC 
by the TET enzymes results in the formation of 5-formylcytosine 
and 5-carboxylcytosine. It’s speculated that decarboxylation of 
5-carboxylcytosine is the final process of reversing DNA methylation
and the generation of unmethylated cytosine [12]. The physiological
function of 5hmC and the downstream intermediates is not clear yet.

Inhibition of DNA methyltransferase (DNMT) enzymes either 
directly or indirectly re-express epigenetically silenced genes by 
reversing DNA methylation. Direct inhibition of DNMT involves 
binding of an inhibitor to one of the DNMT isotypes, while indirect 
inhibition involves the trapping of DNMT isotypes by cytidine analogs 
after their incorporation into DNA [13]. The chemically synthesized 
compound 2-(1,3-dioxo-1,2-dihydro-2H-isoindol-2-yl)-3-(1H-indol-
3-yl) propanoic acid or RG108 is a direct DNMT1 inhibitor with
demethylating activity both in vitro and in vivo. On the other hand,
5-aza-2`-deoxycytidine (decitabine, DAC) and 5-azacytidine (5AC) are 
nucleoside analogs that indirectly inhibit DNMT. The incorporation
of 5AC into RNA with consequent inhibition of protein synthesis is
the major difference from DAC, which fully incorporates into DNA.
Although 10-20% of 5AC is incorporated into DNA versus full
incorporation of DAC into DNA; 5AC has been shown to be more
clinically effective than DAC [14]. The question of which strategy
(direct versus indirect) is more effective in inhibiting DNA methylation 
is intriguing. A comparison of the demethylating activity of the direct,
indirect inhibitors and the natural compound (-)-epigallocatechin-3-
gallate (EGCG) revealed that the indirect inhibitors are the most potent 
demethylating agents [15]. However, direct inhibition is not associated

Abstract
The role of epigenetics in cancer development establishes enzymes that regulate epigenetic modifications as 

vital targets for cancer therapy. Inhibition of DNA Methyltransferase (DNMT) and Histone Deacetylase (HDAC) 
enzymes proved to be a successful strategy in the treatment of some types of cancer. There is currently growing 
interest in studying the effect of inhibition of enzymes affecting other histone modifications, like histone methylation, 
and how they can affect cancer development and progression. A major limitation of epigenetic therapy is the lack of 
specificity with consequent global induction of epigenetic changes. Additionally, optimal dosing, single or combined 
therapy and the sequence of delivery of combined therapy are clinical issues associated with the use of these drugs. 
Herein, we will summarize the impact of using the different classes of epigenetic drugs in cancer and other chronic 
diseases. 

Journal of
Pharmacogenomics & PharmacoproteomicsJournal 

of
 P

ha
rm

ac
og

enomics & Pharm
acoproteomics

ISSN: 2153-0645



Citation: Chahin H, Ekong B, Fandy TE (2013) Epigenetic Therapy in Malignant and Chronic Diseases. J Pharmacogenom Pharmacoproteomics 
4: 118. doi:10.4172/2153-0645.1000118

Page 2 of 5

Volume 4 • Issue 2 • 1000118
J Pharmacogenom Pharmacoproteomics
ISSN: 2153-0645 JPP, an open access journal 

with the cytotoxicity observed with the use of indirect inhibitors. A 
major drawback of DNMT inhibition, either directly or indirectly, is 
the induction of global demethylation with consequent undesired 
activation of oncogenes and chromosomal instability.

Non-nucleoside analogues like hydralazine (antihypertensive 
agent) and procainamide (management of cardiac arrhythmia) 
demonstrated DNA demethylating activity. The mechanism of their 
demethylating activity is not clear and is speculated that they bind to 
CpG-rich regions [16]. Unfortunately, the demethylating activity of 
these drugs is not reproducible and requires administration of clinically 
irrelevant high doses [13]. 

There are several approaches to use DNMT inhibitors in the 
clinical setting. The combination of indirect DNMT inhibitors with 
chemotherapy to harness their gene expression modulation with 
consequent sensitization of cancer cells has been applied in different 
tumors. 5AC restored the sensitivity of bladder cancer cells to cisplatin 
[17]. 5AC reversed platinum resistance in patients with platinum-
refractory epithelial ovarian cancer [18]. The clinical utility of DNMT 
inhibitors was challenged by their cost effectiveness. The economic 
burden of the drug decitabine was compared to the use of best 
supportive care (red blood cell transfusion, erythropeoiesis stimulating 
agents, colony stimulating factors, deferoxamine, as well as platelet 
transfusion) in treating intermediate-high risk MDS [19]. Five days 
dosing regimen of decitabine was shown to be a cost effective option in 
treating intermediate high risk MDS when compared to best supportive 
care. 

Histone Deacetylase Inhibitors
Histone deacetylase (HDAC) inhibitors are another class of 

epigenetic drugs. Although their name implies inhibition of histone 
deacetylation, they also inhibit the deacytelation of other proteins like 
p53 and NF-kB [20]. Most HDAC inhibitors share a common structure 
that is characterized by three main regions; a surface recognition 
domain, a linker, and a metal binding domain that binds to Zn at the 
enzyme core (Figure 1). Romidepsin is an HDAC inhibitor with a cyclic 
structure that requires reduction of the disulfide bond to expose the 
sulfur group [21]. Consequently, the linker attached negatively charged 
sulfur access the active site of the HDAC enzyme and binds to Zn with 
consequent HDAC deactivation. 

A major drawback associated with the use of HDAC inhibitors is 
the non-selective inhibition of the different classes of HDAC enzymes. 
Current studies focus on HDAC inhibitors that are highly selective. 
For instance, the orally active mocetinostat (class I and IV selective 
HDAC inhibitors) demonstrated no or little hematological toxicity like 
thrombocytopenia when compared to non-selective HDAC inhibitors 
[22]. Similar to other non-selective HDAC inhibitors, mocetinostat 
induced other off-target effects like autophagy, microtubules 
destabilization and cell death [23-25]. Mocetinostat demonstrated in 
vitro synergistic effects with the proteasome inhibitor bortezomib, 
giving the opportunity of using lower doses of both drugs to minimize 
their toxicity [26]. 

The pharmacodynamics of HDAC inhibitors is dose-dependent. 
In lower doses, they act by modulating gene expression. At higher 
doses, they induce cytotoxicity through different mechanisms [27]. In a 
phase II clinical trial enrolling patients with relapsed classical Hodgkin 
lymphoma, lower doses of mocetinostat showed better outcome than 
higher doses, in favor of non-cytotoxic mechanism of action [28]. 
Another phase II clinical trial examined the efficacy of the orally active 

vorinostat in combination with bortezomib, a proteasome inhibitor, for 
the treatment of recurrent glioblastoma [29]. The study was a follow 
up on previous pre-clinical studies, which demonstrated synergistic 
cytotoxicity when combining HDAC inhibitors with proteasome 
inhibitors in glioblastoma cells. Study results showed no improvement 
among the 34 subjects included with only one partial response in one 
patient; further supporting a non-cytotoxic mechanism of action of 
these drugs [29]. 

The combination of HDAC inhibitors with chemotherapeutic 
agents is another treatment strategy that depends on the induction 
of pro-apoptotic genes and repression of anti-apoptotic genes by 
HDAC inhibitors. A Phase II randomized, double blinded, placebo 
controlled study enrolling non-small cell lung cancer (NSCLC) patients 
combined vorinostat with Carboplatin and paclitaxel. Results showed 
an enhancement in the efficacy of paclitaxel and carboplatin for NSCLC 
treatment, predicting vorinostat as a promising future drug in treating 
NSCLC [30]. 

The combination with DNMT inhibitors is another widely used 
treatment strategy. A recent phase II clinical trial investigated the 
effectiveness and the safety of hydralazine (DNMT inhibitor) and 
magnesium valproate (HDAC inhibitor) in the treatment of MDS. The 
results of the study showed less progression to acute myeloid leukemia 
(AML) and fewer requirements for blood transfusion [31]. Several 
other studies adopted the sequential combination of DNMT inhibitors 
and HDAC inhibitors in MDS and AML and showed promising results 
and are reviewed elsewhere [32,33]. 

The clinical utility of HDAC inhibitors is not confined to neoplastic 
diseases. Other metabolic diseases like the Maple SyrupUrine Disease 
(MSUD) demonstrated improvement after the use of the non-FDA 
approved HDAC inhibitor, phenyl butyrate. MSUD is a condition 
that is caused by an error in the metabolism of amino acids due to a 
deficiency in the mitochondrial branched-chain keto dehydrogenase 
complex (BCKDC) [34]. Consequently, branched chain amino acids 
(BCAA) and the corresponding branched chain alpha keto acids 
(BCKA) starts accumulating in plasma and tissues which, ends up in a 
maple syrup odor in urine as well as other symptoms that range from 
neurological deterioration to weight loss due to feeding problems [34]. 
Phenyl butyrate treatment resulted in lowering the neurotoxic BCKA 
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Figure 1: Chemical structures of the FDA approved HDAC inhibitors. The left 
panel shows the cyclic structure of romidepsin showing the three domains in 
different colors. The right panel shows the different domains in the structure of 
vorinostat. The green color indicates the metal binding domain, the orange color 
indicates the linker domain and the blue color indicates the surface recognition 
domain.
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and BCAA levels by increasing the overall activity of the BCKDC 
enzyme complex. Other HDAC inhibitors are currently tested in liver 
and kidney fibrosis [35] and neurological disorders like spinal muscular 
atrophy and myotonic dystrophy [36].

miRNAs-based Therapeutics
miRNAs are 18-24 nucleotides non-coding RNA that down 

regulate the expression of their target genes via translational repression 
or cleavage of mRNAs [37]. Recently, it was proposed that miRNAs may 
also upregulate the translation of their target genes [38]. The number 
of human miRNAs is estimated to be more than 1100 and they can 
function as oncogenes or tumor suppressor genes (TSG), depending 
on their mRNA target [32]. miRNAs-based therapeutics is a rational 
therapeutic approach in cancer treatment by modulating the expression 
of oncogenes and TSG. Currently, there are no FDA approved miRNAs 
modifier drugs available in the market because of their stability. The 
stability and specificity of miRNAs are among the major hurdles that 
impact the development of miRNA-based therapeutics. Modifications in 
the nucleotides structure, such as 2`-O-methyl and 2`-O-methoxyethyl 
anti-miRs, improved the stability of miRNAs [39]. 

miRNAs delivery is another challenge that obstructs the 
development of this type of therapy. Non-viral delivery systems like 
liposomes and nanoparticles demonstrated promising results in animal 
studies [40,41]. Exosomes, vesicles of endocytic origin, shuttle different 
types of RNA between cells and can be utilized to deliver miRNAs [42]. 
Exosomes would provide a stable environment for miRNAs preventing 
their degradation and can be modified externally to target miRNAs 
to specific type of cells. Viral gene delivery is another approach that 
critically enhances miRNAs delivery. Lentiviral gene delivery promotes 
stable expression of miRNAs by integrating into the human genome. 
Although this integration is thought to have a minimal impact on the 
genome, there is always a risk of disrupting the genomic integrity. The 
use of the episomal adenoviral vectors could provide an alternative 
approach to avoid viral genome integration; however, the development 
of immune response and transduction efficiency are major limiting 
factors to this approach [43].

Recent studies have been focusing on miRNAs as a diagnostic 
tool due to the fact that miRNAs are very stable in human plasma. 
This phenomenon can be utilized in detecting biomarker miRNAs to 
identify certain diseases and to distinguish between the different stages 
of a disease. For instance, the fluctuation of serum miRNA-141 levels 
can be used as a reliable and sensitive method to distinguish prostate 
cancer patients from healthy individuals [44]. Current studies have 
been investigating miRNAs as biomarkers in drug induced liver injury 
[45], type II diabetes [46], coronary artery disease [47,48], Barrett’s 
Esophagus progression [49], as well as AML [50]. 

A recent phase II clinical study investigated the levels of circulating 
miRNA-122 and miRNA-192 among patients with acetaminophen 
poisoning [45]. This was a follow up on a previous study that investigated 
acetaminophen induced acute liver injury in mice. miRNA-122 and 
miRNA-192 serum levels were significantly higher in acetaminophen-
induced liver injury patients when compared with healthy individuals. 
The same observation was also true among chronic kidney disease 
patients (CKD); albeit lower than acetaminophen-induced liver injury 
patients.

The role of miRNAs in other chronic diseases like diabetes was 
investigated. A phase II clinical trial investigated the hypothesis that 
miRNAs may contribute to type II diabetes mellitus (DM) progression 

[46]. Different miRNAs were screened using microarrays followed by 
quantitative PCR and showed lower plasma levels of different miRNAs, 
when compared to healthy individuals; with miRNA-126 being the 
most associated with DM [46]. The main function of miRNA-126 is 
to control angiogenesis, wound repair as well as maintaining vascular 
integrity and is known to be highly expressed in endothelial cells as 
well as endothelial apoptotic bodies [51,52]. miRNA-126 reduction 
is believed to contribute to the peripheral angiogenic signaling 
impairment associated with diabetic patients [46]. miRNA-126 down 
regulation was also associated with impairment of vascular integrity 
and angiogenesis in mouse embryonic cells. miRNA-126 keeps the 
vascular integrity and maintain homeostasis of endothelial cells via the 
down regulation of two VEGF pathway regulators; phosphoinositol-3 
kinase regulatory subunit 2 (PK3R2) and the Sprouty-related protein 
(SPRED1) [52]. The role of miRNAs in the discrimination of Barrett’s 
Esophagus (BE) with and without dysplasia was evaluated [49]. A total 
of 22 BE patients with 11 dysplasia patients were evaluated. The study 
demonstrated that BE patients with dysplasia can be discriminated by 
using miRNAs as biomarkers with clinical accuracy [49].

Modulation of different miRNAs has been reported in various 
leukemias [53,54]. A recent study compared miRNAs expression 
in normal myeloid early progenitor cells (CD34+) to that of newly 
diagnosed AML patients [54]. About 26 miRNAs were shown to be down 
regulated in AML samples when compared to normal CD34+cells [54]. 
Of note, miRNA-29b (targets DNMT enzymes) was shown to be down 
regulated in AML patients [50,55]. Accordingly, the role of miRNA-
29b as a biomarker for decitabine treatment in AML was studied [50]. 
miRNA-29b was evaluated in 53 AML patients as a pretreatment 
determinant for the use of the DNMT inhibitor decitabine [50]. The 
study demonstrated that the pretreatment levels of miRNA-29b can be 
used to evaluate the subsequent response of decitabine; the higher its 
level, the better is the clinical response to decitabine.

In a follow up clinical trial, the expression of miRNA-29b and 
miRNA-101 was examined to determine whether it can predict the 
response to the combination of 5-azacytidine, ATRA and valproic 
acid in AML patients [56]. The study reported the downregulation 
of miRNA-29b in AML patients. However, there was no significant 
difference in the expression of miRNA-101 when compared to healthy 
controls [56]. A follow up among responders and non-responders 
showed no difference in the expression of both miRNAs, indicating the 
absence of a relationship between the response to 5-azacytidine, ATRA, 
and valproic acid therapy and the level of miRNA-29b [56]. 

Conclusion
Recent advances in the field of epigenetics underlie many promising 

clinical applications including prediction of patient response to 
treatment, prediction of prognosis and biomarkers for early detection 
of cancer and other chronic diseases like DM and CKD. The histone 
modifications associated with cancer progression and other diseases 
started to gain focus and provided an explanation of how cancer cells 
acquire a DNA methylation pattern that is different from their normal 
counterparts. Indeed, histone modifications can guide DNMT enzymes 
and consequently DNA methylation [57]. However, the large number 
of histone modifications associated with cancer development and the 
sequence of these modifications remains to be discovered. Although 
four FDA-approved drugs (Table 1) are believed to act through 
induction of epigenetic modifications, none of them is indicated 
for the treatment of solid tumors. Fortunately, several HDAC and 
DNMT inhibitors are currently in preclinical and clinical trials for the 
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treatment of different types of solid tumors. Combination therapy with 
romidepsin and decitabine in clear cell renal cell carcinoma induced 
synergistic re-expression of the TSG sFRP1 and induced apoptosis 
and cell cycle arrest [58]. DAC was shown to be effective against 
pancreatic ductal adenocarcinoma and slowed down its progression in 
vivo without inducing side effects [59]. The development of miRNA-
based therapeutics is feasible but curbed by drug delivery issues and 
it is hard to predict when they will get FDA-approval. Limitations to 
epigenetic therapy do exist with lack of specificity considered as the 
major limitation. Although target specificity was achievable (for 
instance, targeting specific class of HDAC enzymes), the substrate of 
the targeted enzyme is global leading to global epigenetic changes and 
not gene specific changes. 
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Generic name (brand) Mechanism of action Uses Dosage/route of administration

Azacitidine (Vidaza®)
FDA approval 2004

DNMT inhibitor with possible 
cytotoxic effect

Labeled: myelodysplastic syndrome 
(MDS)
Unlabeled: Acute Myelogenous 
Leukemia (AML)

MDS: 75 mg/m2/day x 7 days (subcutaneous, IV)
Repeated every 4 week

Decitabine (Dacogen®) 
FDA approval 2006

DNMT inhibitor with possible 
cytotoxic effect

Labeled: MDS
Unlabeled: AML and Sickle Cell 
Anemia

MDS: 15 mg/m2 every 8hrs (IV) (~45 mg/m2/day x 
3 days). It is recommended to administer the drug 
for at least 4 cycles; continue until patient has no 
benefit

Vorinostat (Zolinza®)
FDA approval 2006

Histone deacetylase (HDAC) inhibitor 
(class 1 and 2)

Labeled: cutaneous T-cell lymphoma 
(CTCL) [progression, persistent & 
recurrent]

CTCL: 400 mg orally once daily (until disease 
progresses or unacceptable toxicity develops)

Romidepsin (Istodax®)
FDA approval 2009

HDAC inhibitor (potent class I 
inhibitor)

Labeled: refractory CTCL and 
refractory Peripheral T-cell 
Lymphoma (PTCL)

CTCL: 14 mg/m2 (IV) on days: 1, 8 and 15 in a 28-
day cycle.
PTCL: 14 mg/m2 on days 1, 8, & 15 in a 28-day 
cycle.  
(Repeat cycles as long as there is benefit & patient 
is tolerated)

Table 1: FDA approved epigenetic drugs and their labeled and unlabeled uses.
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