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Abstract
Soluble proteins of ungerminated conidia of Erysiphe necator exhibited esterase and cutinase activities, and such 

hydrolytic activities were measured in the parietal protein fraction. However, histochemical localisation of esterase 
activity was detected upon further fungal development, as well in elongating germ tubes and in appressoria. The 
esterase activity was spectrophotometrically quantified using para-nitrophenylbutyrate as a substrate, and cutinase 
activity was determined using 3H-labelled cutin. Histochemical localisation was determined using indoxyl acetate as 
a substrate. Diisopropyl fluorophosphate was used as inhibitor of serine hydrolase. The role of a putative constitutive 
parietal cutinase in the ungerminated conidia of E. necator in adhesion to the host and differentiation of infective 
structures, as well as implications for successful penetration, are discussed. 
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Introduction
All plant organs are covered by a cuticular layer composed mainly 

of cutin, which forms the structural component of the cuticle in higher 
plants. Cutin is a complex polymer of epoxy and hydroxy fatty acids, 
which can be hydrolysed by specific serine esterases, i.e., cutinases [1]. The 
plant cuticle of aerial organs constitutes the first physical and chemical 
barrier that fungal phytopathogens must overcome to successfully infect 
their host. Recently, cutinase activity was discovered in the bacterium 
Thermobifida fusca that displayed the same affinity for substrates as 
Fusarium sp. but with a better thermostability [2]. Fungal pathogens have 
perfected different strategies to attach to the cuticular surface and then 
to penetrate the epidermal layer. The secretion of cutinolytic enzymes 
during the first steps of the infection process participates in spore 
attachment and the depolymerisation of the cutin complex, generating 
an entrance to the host cell [3]. The differentiation of infectious structures 
on the plant cuticle is also associated with the synthesis of esterases [4]. 
For example, esterases and cutinases contribute to the attachment of 
uredospores of Uromyces vicia-fabae to the host surface [5]. During the 
germination process, the conidia of Blumeria graminis liberates exudates 
containing esterases [6] and a pool of extracellular hydrolytic enzymes 
(e.g., cutinases) in response to a contact stimulus, leading to cutin 
hydrolysis and cutin monomer liberation [7,8]. A number of specific 
monomers of cutin activate the conidia germination and appressorium 
differentiation in Magnaporthe grisea [9].

Previous work of Heintz and Blaich [10] has suggested that the 
host penetration by Erysiphe necator, one of the major fungal disease of 
cultivated Vitis species, is mainly the result of mechanical pressure from 
the infectious hyphae. However, several species of the genus Erysiphe 
and other powdery mildews can synthesise enzymes that initiate the 
depolymerisation of the host plant cuticle and cell wall [7,11]. The aim 
of the present work was to demonstrate the presence of a constitutive 
cutinolytic enzyme in the conidia of E. necator. The role of cutinase 
in E. necator infection of grapevine and its overall role in the host-
pathogen interaction are discussed.

Material and Methods
Organisms and growth conditions

Cuttings were obtained from Vitis vinifera L. cv. Chasselas 

cultivated in the experimental vineyards of Agroscope Changins-
Wädenswil (Switzerland). Rooted plants were grown in the greenhouse 
as previously described by Pezet et al. [12]. When 10 leaves had 
developed, plants were placed in a growth chamber under alternating 
light (16 h, 22°C) and dark (8 h, 18°C) under 60% relative humidity. 
When plants reached the 15 leaf-stage, the fully developed leaves 
were used for further experiments. Detached leaves were sterilised by 
incubation in a 4% (w/v) calcium hypochlorite aqueous solution for 10 
min, rinsed once with sterile distilled water and placed in Petri dishes 
(abaxial surface towards the medium) containing water agar (20 g/l) 
supplemented with benzimidazole (30 mg/l). As a primary inoculum, E. 
necator conidia were collected from infected leaves in the vineyards and 
were used to artificially inoculate the adaxial surface of the leaves. The 
leaves were inoculated by dispersing conidia from sporulating zones of 
E. necator by a slight blowing using a mini labour-pump. Conidia from
2-week-old infected leaves were harvested by vacuum aspiration [13]
using a bioaerosol sampler [14] and immediately stored dry at -80°C in 
cryotubes until use.

Extraction of proteins and enzyme assays

Cell wall proteins were extracted from 100 mg of ungerminated 
conidia harvested as described above. These proteins were suspended in 
10 ml phosphate buffer 1 M pH 7.5 with 1% Triton X-100, incubated for 
24 h at 4°C under constant agitation and centrifuged (10,000 rpm, 4°C, 
10 min). The supernatant, corresponding to the parietal protein extract 
(PPE), was placed in dialysis tubing and concentrated in polyethylene 
glycol (PEG 20,000) to 1 ml and stored at -20°C until use. Total proteins 
were extracted from 100 mg ungerminated conidia harvested as 
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described above. Conidia were mixed with 2 g of glass beads (1 g ∅ 0.25-
0.30 mm and 1 g ∅ 0.17-0.18 mm), freeze dried under liquid nitrogen 
and stirred during 30 s. Conidia and glass beads were then suspended in 
10 ml phosphate buffer 1 M pH 7.5. Proteins were extracted according 
to the method of Van Etten and Freer for 30 min [15]. The crude protein 
extract was centrifuged (10,000 rpm, 4°C, 10 min). The supernatant, 
corresponding to the cytoplasmic protein extract (CPE) was placed in 
dialysis tubing, concentrated to 1 ml in PEG, filtered (0.2 µm, Akrodisk 
Nalgene) and stored at -20°C until use. The culot, corresponding to 
remaining parietal proteins (RPP), was suspended in 10 ml phosphate 
buffer 1 M pH 7.5 containing 1% Triton X-100 and incubated at 4°C 
during 24 hours. This extract was placed in dialysis tubing, concentrated 
to 1 ml in PEG, filtered (0.2 µm, Akrodisk Nalgene) and stored at -20°C 
until use. Microscopic examination showed that >95% of the conidia 
were broken. Proteins were determined by the Bradford method. 
Non-specific esterase activity was spectrophotometrically measured 
using para-nitrophenyl butyrate (PNB) [16], and cutinase activity was 
determined using (3H)tomato cutin, as previously reported [17]. Pure 
tomato cutin was prepared according to Salinas et al. [18] and labelled 
with (3H)NaBH4 (3.7 × 109 Bq; 5.2 × 1011 Bq mmol-1) according to 
Koller et al. [19]. (3H)cutin was chemically depolymerised using 0.5 M 
methanolic NaOH under N2 [18]. The radioactivity of the fatty acids 
released from enzymatically and chemically depolymerised (3H)cutin 
was measured in a scintillation counter (Intertechnique SL-30). 

Histochemical localisation of esterase activity

Histological localisation of esterase activity in conidia was 
determined with indoxyl acetate as a substrate, as described previously 
[5] with slight modifications. The medium was placed on glass slides. A 
first batch of slides were inoculated with fresh conidia from sporulating 
grapevine leaves by blowing on the medium with a labour mini-pump 
as described above. The other was inoculated with washed conidia 
according to the following method: conidia (5 mg) were washed in 
water with 2% Triton X-100 during 1 h and washed 5 times in distilled 
water by centrifugation (10,000 rpm, 4°C, 1 min). The supernatant 
was discarded and conidia were suspended in 1 ml of sterile distilled 
water. This suspension was filtered through a 0.45 µm filter, dried 
and conidia were blown on slides as described before. Slides were 
incubated for 24 h in humid chambers and observed with a bright 
field microscope equipped with a digital camera (Leica DC 100). As a 
control, ungerminated conidia were autoclaved for 20 min at 120°C and 
treated as previously described.

Scanning electron microscopy (SEM)

Leaf discs (1-cm diameter) were excised from infected Vitis leaves 
12 h after inoculation and fixed with osmium tetroxide vapours 
(aqueous solution of 2% OsO4 (w/v) and 3% CrO3 (w/v)) for 4 h at room 
temperature in a closed humid chamber. They were then dehydrated in 
a graded series of acetone (10, 30, 50, 70, 90 and 100% (v/v); 20 min on 
ice for each step), dried in CO2 according to the critical point drying 
method (Critical Point Dryer, Baltech) and coated with gold. The 
samples were observed at 5 kV using scanning electron microscopy (Jeol 
JSM-6300 F). To investigate the importance of cutinase and esterase in 
the process of cutin degradation, leaves of grapevine were sprayed with 
a 5 µM solution of the inhibitor diisopropyl fluorophosphate (DIPF) 
according to the method of Deising et al. [5]. The leaves were allowed 
to dry before the inoculation of dry conidia. Leaf discs were excised 12 
h after inoculation and treated as described before. 

Results
A non-specific esterase activity was measured in the cell wall 

protein extract (PPE) of ungerminated conidia, as well as in the 
remaining parietal protein fraction from broken conidia (RPP). No 
activity was detectable in the cytoplasmic protein extract (CPE) (Table 
1). Each active extract was further used to determine if the non-specific 
esterase activity is a cutinase activity by using (3H)-cutin as a hydrolysis 
substrate. The enzymatic activity of the parietal protein extract (PPE) 
as well as the remaining parietal protein extract from broken conidia 
released up to four-fold more labelled fatty acid monomers than the 
control, indicating the presence of a specific, constitutive cutinase 
activity in the cell wall protein extract of ungerminated conidia of E. 
necator (Table 2). The cytoplasmic protein extract (CPE) was similar to 
the control, displaying no specific cutinase or esterase activity for the 
cytoplasm of ungerminated conidia.

Histochemical localisation of cutinase activity in conidia was 
determined on an agar medium containing the non-specific esterase 
substrate indoxyl acetate (Figure 1). Intact, fresh, ungerminated conidia 

Figure 1: Histochemical localisation of esterase activity in infectious structures 
of Erysiphe necator by optical microscopy after deposition on artificial medium 
containing indoxyl acetate. (A) Heat-killed conidium displaying no indigo blue 
crystals. (B) Ungerminated conidium showing indigo blue crystals (arrow). (C) 
Conidium and germ tube displaying indigo blue crystals (arrows). (D) Conidium 
and appressorium displaying indigo blue crystals (arrows); the blue colour is 
present in the overall appressorium. a: appressorium, c: conidium, and h: 
hypha. Scale bars represent 30 µm.

Protein extract Protein (mg ml-1) Activity (μmol min-1 μg-1 proteins)
PPE 2.05 (±0.31) 0.82 (±0.08)
CPE 2.25 (±0.22) 0.00 (±0.00)
RPP 1.37 (±0.11) 0.80 (±0.06)

Table 1: Non-specific esterase activity measured in parietal (PPE), cytoplasmic 
(CPE) and remaining parietal (RPP) protein extracts in ungerminated conidia of 
Erysiphe necator.

Sample Activity (cpm* × 106)
Control 2.152 (±0.003)

Enzymatic depolymerisation with PPE 10.418 (±0.017)
Enzymatic depolymerisation with RPP 9.962 (±0.015)

*cpm: counts per minute.
Table 2: Quantification of radioactively labelled cutin monomers released in the 
presence of parietal protein extract (PPE) and remaining parietal protein extracts 
(RPP) of ungerminated conidia of Erysiphe necator.
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Mucilaginous material localised in a specific zone of host-plant 
pathogen interaction contains non-specific esterases and, sometimes, 
cutinases [5,17]. Indeed, cutinases were identified in exudates of 
Blumeria graminis [11]. In the present work, the occurrence of an 
extracellular matrix in the vicinity of the appressoria was observed 
by SEM. A previous report [20] identified a similar matrix under the 
appressoria developing on artificial substrates, indicating the fungal 
origin of such material. Moreover, the alteration of the plant cuticle 
observed by SEM could signify that the material released from the 
enzymatic hydrolysis of the cutin partially forms the matrix, improving 
the adhesion of fungal structures. This is confirmed by the use of DIPF as 
serine hydrolase inhibitor which inhibits the enzymatic activity linked 
to the degradation of the cuticular material in the vicinity of the conidia 
and primary infectious structures as shown before in Blumeria graminis 
[21]. However, the use of esterase and cutinase inhibitors does not affect 
the adhesion of conidia on grapevine cuticle as previously shown [20], 
suggesting that other molecules exhibiting adhesive properties, such as 
polysaccharides, proteins or glycoproteins, are secreted [22]. In Botrytis 
cinerea, the extracellular matrix permits the adhesion of conidia to 
hydrophilic or hydrophobic substrates containing glucose, proteins 
and galactosamine [23]. In the E. necator-Vitis vinifera interaction, the 
adhesion of fungal structures to the host surface remains closely linked 
to the development of specific infectious structures [20]. The contact 
area between the appressorium and the cuticle represents an efficient 
way to anchor the pathogen to the host. These authors demonstrate that 
abundant washings do not remove the appressoria, which remain firmly 
attached, whereas conidia break at the site of germ tube formation and 
are eliminated.

In the present study, a constitutive parietal cutinase activity in 
ungerminated conidia was established by the hydrolysis of radioactively 
labelled cutin. A previous study [7] describes an important esterase 
activity in ungerminated and germinated conidia of E. graminis. In B. 
cinerea, a cytoplasmic cutinase activity is expressed during germination 
and further mycelium development [18,24]. The parietal localisation 
of esterase activity is in accordance with previous observations in E. 
necator [20] and other pythopathogenic fungi, such as E. graminis 
[6] and Uromyces vicia-fabae [5]. The constitutive esterase of the 
ungerminated conidia of E. necator is excreted upon contact with the 
cuticular surface during the primary infection steps [25]. In E. necator, 
the reticulated structure of the outer surface of the conidia increases the 
contact zone with the host. A weak quantity of extracellular material 
originates from the decorations of the conidia upon contact with the 
host surface in Blumeria graminis f. sp. hordei [26]. 

The results of the present study suggest that E. necator releases a 
low amount of parietal cutinase upon contact with the host surface, 
sufficient to initiate the hydrolysis of cutin and to permit the further 
development of infectious fungal structures. 

 As shown previously in Fusarium solani and Venturia inaequalis, the 
synthesis of cutinolytic enzymes can be induced by a low concentration 
of cutin monomers [8,25]. Different esterase isoenzymes have been 
identified in Curvularia eragrostidis whose release is mediated by 
epicuticular waxes [4], consequently modifying the virulence of the 
pathogen according to the host plant. In this respect, the cutinase 
family may be linked to virulence factors, as recently demonstrated 
in the genus Phytophthora [27]. The cutin monomers lead to the 
activation of cutinase genes implicated in further infection steps, such 
as the differentiation of appressoria [28]. Cutinase genes have also 
been identified in several fungal species, but their roles in pathogenesis 
are under investigation [29,30]. In Magnaporthe grisea, the CUT2 

displayed indigo blue crystals, indicating the presence of functional 
esterases. No formation of blue crystals appeared in the conidial 
cytoplasm. Washed conidia did not exhibit any blue crystals indicating 
that esterases were eliminated during the washing process. Heat-killed 
conidia remained hyaline after substrate contact, indicating inactivation 
of esterases at 120°C. Moreover, after germination, formation of indigo 
blue crystals could be followed along the germ tube and at its apex 
during appressorium and hyphal development. When fresh conidia 
were sprayed on grape cutin, the area between the appressorium peg and 
the host surface was altered, showing localised enzymatic degradation 
and erosion of the cuticular surface (Figure 2). A mucilaginous sheath 
was observed in close proximity to the appressorium but not along 
the differentiated hyphal tip. In the case of pre-treated leaves with the 
inhibitor of serine hydrolases DIPF, no such degradation was observed 
neither under the conidia nor the appressoria (Figures 2E and 2F). 
Moreover, the development of E. necator on DIPF pre-treated leaves 
stopped after the formation of the first appressorium without any 
further development (data not shown).

Discussion
The infection process of plant fungal pathogens follows a strict 

chronological sequence during which each fungal morphological 
differentiation plays a functional role in host colonisation. The 
determination of a constitutive cell wall cutinase in ungerminated 
conidia of Erysiphe necator, combined with esterase activity in growing 
hyphae, constitute a new cue to better understand the infection 
mechanisms of susceptible varieties of Vitis vinifera by E. necator.

Figure 2: Degradation of the cuticular layer of Vitis vinifera cv. Chasselas upon 
contact with infectious structures of Erysiphe necator observed by scanning 
electron microscopy. (A) Appressorium formation from a conidium and the 
first step of cuticular degradation (arrow). (B) Detail of the zone of contact 
of the appressorium with the cuticular layer, which is partially depolymerised. 
(C) Functional appressorium displaying active degradation of the cuticular 
layer (arrows) and the developing primary hypha. (D) Detail of C showing 
an important erosion of the cuticular surface. (E) Leaves pre-treated with the 
inhibitor DIPF showing no cuticular degradation neither under the conidium nor 
the appressorium. (F) Detail of (E) showing no erosion of the cuticular surface 
(arrow). a: appressorium, c: conidium, and h: hypha. 
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cutinase gene is over-expressed during appressorium maturation and 
host penetration [31]. The inhibition of this enzyme in a mutant strain 
drastically reduces the virulence of this pathogen on rice and wheat. 
We hypothesise that the esterase activity of ungerminated conidia of 
E. necator hydrolyses specific cuticular wax esters, which in turn may
activate the synthesis of other esterases and serine esterases.

The activity of hydrolytic enzymes, such as esterases and cutinases, 
in the primary infection step of E. necator on grapevine could constitute 
one key factor in successful host penetration and trophic interaction. 
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