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Introduction
One of the basic purposes of survival analysis is the estimation of 

survival curves from censored survival data. In case of no covariates, 
non-parametric maximum likelihood estimator i.e. Kaplan-Meier 
(KM) survival function [1] is commonly used for estimating survival 
probabilities. However, the problem of Kaplan-Meier survival function 
is that it gives same survival probabilities for two groups having the 
same number of events and censored observations, by ignoring time 
spans (i.e. waiting times) between consecutive events.

To illustrate this, consider two groups X and Y each having n 
observations. In both groups, consider m events and n–m censored 
observations. Supposing the sequence of occurrence of events and 
censored observations to be equal, but their discrete observed times 
to be different, we consider that one data set consists of time ranges 
t1, t2, …, tp and another of time ranges t1, t2,.., tq respectively, where q 
> p. Appling Kaplan-Meier survival function in this setting, we obtain
the same results for both groups, ignoring severity of disease. We can
explain this idea in a more understandable form, from the following
dummy example.

Suppose we have data sets of two groups (GI, GII) having different 
diseases. Both groups have the same sequence of occurrence of events 
and censored observations, except times of occurrence are different. 
We apply Kaplan-Meier survival function on both data sets (Table 1). 
Although observed times regarding events and censoring are clearly 
different in both groups, the probability columns give the same results, 
indicating a severe flaw of Kaplan-Meier survival function.

In order to overcome this problem, in this paper we present an exact 
waiting time survival function (EKM), based on discrete survival times, 
as well as a variance estimator based on exact waiting times. Although 
the concept of discrete survival times is not entirely new [2-5] until now 

no attention has been given to different times of occurrence of events 
i.e. waiting times between two consecutive events. We conducted three
different simulation studies to compare (1) the performance of Kaplan-
Meier estimator and exact waiting time estimator by using the Pitman
Closeness Criteria [6-8], (2) coverage rates of their lower confidence
limits and (3) widths of their confidence intervals. We applied these
methods to a lung cancer data set.

Methods
Kaplan-Meier estimator

Let X1, X2, …,Xn be the true survival times of n individuals having 
the distribution function F(x) = P(X ≤ x) and Y1, Y2, …, Yn be the 
censoring times having the distribution function G(y) = P(Y ≤ y). 
Further, let the survival times Xi and censoring times Yi assumed to be 
independent. Let Ti = min {Xi, Yi} be the observed survival time and δi = 
I (Xi ≤ Yi) be the indicator function, whether the observed time is event 
or censored. The Kaplan-Meier product limit estimator is defined by 
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where ni is the number of individuals who are alive just before time 
Ti, including those who are about to die at this time, and ri denotes 
the number dieing at this time. Kaplan and Meier used Greenwood [9] 
variance estimator for their survival function
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Abstract
Although Kaplan-Meier survival function is the most commonly used statistical technique of survival analysis, it 

possesses a disadvantage. It may occur that Kaplan-Meier gives same survival probabilities for two groups having 
the same number of events and censored observations, although time spans between consecutive events (i.e. waiting 
times) may considerable vary. Therefore, severity of a disease, in terms of survival times, has no role in the conventional 
concept of Kaplan-Meier. To overcome this problem, in this paper we propose an exact waiting time survival function 
by explicitly considering waiting times between events. A new variance estimator, reducing to binomial variance in case 
of data free from censoring and time differences between two consecutive events equalling to 1, is presented. In order 
to compare the performance of the new estimator with conventional Kaplan-Meier estimator for small to large sample 
sizes, as well as for small to heavy censoring, we conducted a simulation study. The outcome shows that on average 
Pitman Closeness Criteria gives results in favour of our new estimator and confidence intervals have higher coverage 
rates, as compared to that obtained by Kaplan-Meier estimator, especially for lower confidence limits. Furthermore 
widths of confidence intervals are smaller than those based on Kaplan-Meier and Greenwood standard error. The 
proposed procedures are applied to a lung cancer data set.
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Serial number
GI GII

Time Events Number at risk Probabilities Time Events Number at risk Probabilities
1

2

3

4

5

6

7

2

4

6

8

10

12

14

0

1

1

0

0

1

1

7

6

5

4

3

2

1

0.8333

0.6667

0.3333

0.0000

4

16

64

256

1024

4096

16284

0

1

1

0

0

1

1

7

6

5

4

3

2

1

0.8333

0.6667

0.3333

0.0000

Table 1: Fictive survival probabilities of two dummy groups.
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Table 2: Layout of exact waiting time survival function.
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Just like Kaplan-Meier survival function, also Greenwood variance 
estimator does not consider the waiting time between events.

Exact waiting time survival function

Due to not paying any attention to waiting times between two 
consecutive events, we assume severity of diseases to be equal. If the 
waiting time of the occurrence of two events of disease A is always 
less than that of two events of disease B, disease A is assumed to be 
more severe than B and it’s survival probability therefore should be 
less than the survival probability of disease B. However, when applying 
conventional Kaplan-Meier survival function we erroneous obtain 
same survival probabilities for both diseases. To overcome this problem 
we developed an exact waiting time survival function, assuming the 
following sequence of observed survival and censored times:

Starting time __________ Event __________ Event _________ 
End of the study

Let Δi denote the waiting time between two consecutive events 
with i = 2,3,…,n and Δ1 = 1. We proceed as Δ2 equalling to the waiting 
time between the first and second event and Δ3 equalling to the time 
difference between the second and the third event. So on Δn denotes the 
time difference between the (n-1)th and nth event if the data is free from 
censoring. If the data consists of censored observations the number 
of differences is less than the number of observed times. Δ depends 

on the occurrence of events and Kaplan-Meier survival function gives 
the probabilities of these events by using the number of events and the 
number of persons at risk. As events are important parts of survival 
analysis and Δ is depending on events, Δ is also an essential part of 
survival analysis. MoreoverΔ’s also effect survival probabilities, since 
with passage of time, the number of person’s at risk and Δ (not always 
Δ=1) varies. As ∆i and ni’s are related (large ∆i (>1) and large n i result in 
a higher survival probability), their product niΔi leads to corresponding 
results in terms of survival probabilities, but contains much more 
information about nature and severity of a disease. So, instead of taking 
n i , we consider niΔi  in our exact waiting time survival function and 
therefore the time difference between two events is directly related to 
the survival probabilities as well as to the nature of disease, meaning 
that a larger Δ results in a higher survival probability (indicating the less 
severity of disease) and vice versa. This concept is not incorporated in 
the conventional method of Kaplan-Meier survival function. However, 
if the difference between two consecutive events is 1, niΔi reduces to n i  
and gives the same survival probability at time i, as that obtained by 
Kaplan-Meier survival function. 

The basic layout of the above introduced procedure, considering 
discrete survival times, is shown in (Table 2). 

By using the Product-Limit procedure the exact waiting time 
survival function is given by
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Just like Kaplan-Meier survival function, our exact waiting time 
function starts from 1 at time zero and it approaches the lower limit 0 
if the last observed time is event and the last observed difference equals 
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Cen. dist %cen n Pitmann Closeness Criteria

d1 d3 d5 d7 d9

E(4)

E(1)

E(0.1)

E(0.01)

E(0.01)

W(0.5, 1)

 

W(0.5, 50)

W(0.5, 100)

W(1.5, 5)

W(1.5, 25)

W(1.5, 50)

Llog(1.5,2)

Llog(1.5,2)

Llog(1.5,1)

Llog(0.5,1)

Llog(1,1)

Llog(1,1)

U(1,5)

U(2, 25)

U(2,25)

U(2,25)

U(2,5)

U(2, 25)

U(2, 25)

U(2, 25)

U(2, 25)

U(2, 25)

U(2,25)

U(2,15)

U(2,5)

U(2,2.5)

U(2,2.5)

U(2, 50)

U(2,2.5)

0

0.5

30

87

96

4

60

70

10

66

86

2

5

20

40

6

28

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

0.996
0.986
0.995

0.880
0.718
0.755

0.851
0.529
0.572

1.000
1.000
1.000

1.000
1.000
1.000

0.897
0.861
0.827

0.998
0.950
0.950

1.000
1.000
0.995

0.662
0.809
0.781

0.999
0.982
0.970

1.000
1.000
1.000

0.822
0.797
0.748

0.869
0.813
0.769

0.849
0.840
0.796

0.954
0.987
0.999

0.588
0.663
0.697

0.895
0.943
0.955

1.000
1.000
1.000

0.914
0.810
0.832

0.500
0.655
0.849

0.985
0.969
0.971

0.999
1.000
1.000

0.938
0.825
0.830

0.669
0.472
0.610

0.984
0.915
0.768

0.515
0.802
0.824

0.770
0.588
0.588

0.978
0.955
0.956

0.958
0.808
0.792

0.958
0.806
0.785

0.847
0.839
0.780

0.827
0.864
0.810

0.857
0.826
0.839

0.863
0.825
0.745

1.000
1.000
1.000

0.967
0.856
0.888

0.588
0.824
0.923

0.868
0.829
0.824

0.993
0.999
1.000

0.983
0.912
0.894

0.410
0.401
0.497

0.926
0.787
0.619

0.623
0.844
0.870

0.489
0.399
0.517

0.842
0.771
0.770

0.991
0.937
0.947

0.990
0.932
0.930

0.896
0.884
0.886

0.847
0.869
0.841

0.921
0.882
0.888

0.926
0.896
0.862

1.000
1.000
1.000

0.967
0.992
0.997

0.728
0.907
0.965

0.705
0.515
0.451

0.988
0.994
0.999

0.991
0.997
0.999

0.460
0.552
0.493

0.766
0.587
0.505

0.767
0.912
0.936

0.447
0.525
0.655

0.673
0.460
0.411

0.991
1.000
1.000

0.989
0.999
1.000

0.886
0.888
0.910

0.968
0.951
0.957

0.919
0.953
0.960

0.948
0.931
0.934

1.000
1.000
1.000

1.000
1.000
1.000

0.966
0.978
0.999

0.886
0.463
0.485

0.996
0.927
0.940

1.000
1.000
1.000

0.919
0.795
0.784

0.535
0.548
0.602

0.812
0.995
0.981

0.887
0.694
0.834

0.873
0.477
0.520

1.000
1.000
1.000

1.000
1.000
1.000

0.985
0.998
1.000

0.993
0.999
1.000

0.996
1.000
1.000

0.991
0.999
1.000

Table 3: Pitman Closeness Criterion for various distributions and percent censored at the selected deciles, based on 5000 simulated trials.
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Δ = 1. Otherwise, it is greater than 0. Unlike the conventional range of 
Survival function, the range of our proposed estimator is defined by

( )1 ˆ 1 ,1n
EKM

n
S i

  ∆ −
−   ∆   

If the nth difference [Δn] of our proposed estimator is 1, the range 
reduces to the range of Kaplan-Meier survival function. However, if this 
difference is greater than 1, the lower limit of our proposed estimator 
will always be greater than 0. In this case, our estimator approaches to 
the form of shrunken estimator. The idea of Shrunken has beneficial 
in improving the confidence interval coverage rate. The concept is 
not new in Survival analysis; for example, Parzen [10] proposed a 
‘shifted piecewise linear’ empirical quantile function and Borkowf [11] 
proposed a Shrunken Survival estimator with the range  [(2n)-1, 1-(2n)-1]. 
Due to the behaviour of our new estimator, its lower confidence limits 
have higher coverage rates than Kaplan-Meier.

Variance of exact waiting time survival function

The variance estimator for our new procedure is obtained by using 
the delta method. By definition

^
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By applying delta method we derive
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0
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Llog (0.5, 1) u (2, 2.5), 40% censoring 
n=15 

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5

n=50  

0

0,2

0,4

0,6

0,8

1
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0,4

0,6
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1
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W (0.5, 100) u (2, 25), 70% censoring 
n=15 
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n=50       

0

0,2
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1
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Figure 1: Pitman Closeness Criterion for various distributions and various percent censoring.
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Sur. dist Cen. dist %c n

Lower coverage rate

d1 d2 d3

KM EKM KM EKM KM EKM

E(4)

E(0.1)

E(0.01)

E(0.01)

W(0.5, 1)

 

W(0.5, 50)

W(0.5, 100)

W(1.5, 5)

W(1.5, 25)

W(1.5, 50)

Llog(1.5,2)

Llog(1.5,2)

Llog(1.5,1)

Llog(0.5,1)

Llog(0.5,1)

Llog(1,1)

Llog(1,1)

U(1,5)

U(2,25)

U(2,25)

U(2,5)

U(2, 25)

U(2, 25)

U(2, 25)

U(2, 25)

U(2, 25)

U(2,25)

U(2,5)

U(2,15)

U(2,15)

U(2,25)

U(2,2.5)

U(2,25)

U(2,2.5)

0

30

87

96

 4

60

70

10

66

86

1.3

2.01

5

9

42

6

29

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

 15
 50
100

0.701
0.838
0.818

0.831
0.267
0.532

1.000
1.000
1.000

1.000
1.000
1.000

0.196
0.575
0.995

0.998
0.947
0.883

1.000
0.994
0.979

0.388
0.283
0.930

0.999
0.983
0.953

1.000
1.000
1.000

0.272
0.503
0.971

0.296
0.456
0.959

0.287
0.425
0.981

0.297
0.375
0.992

0.937
0.998
1.000

0.182
0.625
1.000

0.784
0.812
0.993

0.701
0.838
0.818

0.968
0.591
0.515

1.000
1.000
1.000

1.000
1.000
1.000

0.411
0.576
0.996

0.999
0.992
0.955

1.000
0.999
0.992

0.544
0.293
0.932

1.000
0.997
0.982

1.000
1.000
1.000

0.306
0.512
0.971

0.311
0.460
0.959

0.369
0.455
0.981

0.566
0.399
0.987

0.938
0.999
1.000

0.617
0.568
0.996

0.786
0.812
0.993

0.231
0.914
0.990

0.321
0.843
0.998

0.998
0.995
0.996

1.000
1.000
1.000

0.017
0.996
1.000

0.865
0.658
0.644

0.957
0.866
0.807

0.071
0.968
1.000

0.933
0.782
0.705

0.999
0.994
0.992

0.083
0.944
1.000

0.083
0.943
1.000

0.044
0.978
1.000

0.033
0.994
1.000

0.780
0.999
1.000

0.009
0.999
1.000

0.482
0.811
0.993

0.231
0.914
0.990

0.753
0.721
0.987

1.000
0.999
0.999

1.000
1.000
1.000

0.054
0.996
1.000

0.990
0.889
0.741

0.998
0.974
0.906

0.133
0.969
1.000

0.995
0.941
0.844

1.000
1.000
0.998

0.083
0.944
1.000

0.084
0.943
1.000

0.056
0.978
1.000

0.127
0.993
1.000

0.785
0.999
1.000

0.155
0.998
1.000

0.497
0.811
0.993

0.237
0.927
0.999

0.430
0.995
1.000

0.983
0.967
0.966

1.000
1.000
1.000

0.553
0.999
1.000

0.643
0.696
0.860

0.809
0.735
0.773

0.593
1.000
1.000

0.758
0.689
0.783

0.978
0.955
0.948

0.285
0.967
1.000

0.303
0.973
1.000

0.482
0.999
1.000

0.621
1.000
1.000

0.763
0.999
1.000

0.655
1.000
1.000

0.486
0.815
0.993

0.237
0.927
0.999

0.580
0.974
1.000

0.999
0.995
0.992

1.000
1.000
1.000

0.562
0.999
1.000

0.953
0.770
0.865

0.986
0.900
0.821

0.553
1.000
1.000

0.966
0.834
0.806

1.000
0.993
0.984

0.286
0.967
1.000

0.306
0.973
1.000

0.490
0.999
1.000

0.613
1.000
1.000

0.768
0.999
1.000

0.668
1.000
1.000

0.505
0.815
0.993

Table 4: Simulated asymptotic Normal 95 per cent lower bound coverage rates at the lower three deciles, with survival times generated from various distributions and 
censoring times from uniform distribution.
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Sur. dist Cen. dist %c

Sum of Lower deciles widths Sum of Upper deciles widths
d1 d2 d3 d7 d8 d9

KM EKM KM EKM KM EKM KM EKM KM EKM KM EKM

E(4)

E(0.1)

E(0.01)

W(0.5, 1)

W(0.5, 25)

W(0.5, 50)

W(0.5, 100)

W(0.5, 400)

W(1.5, 5)

W(1.5, 25)

W(1.5, 50)

Llog(1.5,2)

Llog(1.5, 1)

Llog(0..5,1)

Llog(0.5,0.1)

Llog(0.5,0.01)

Llog(1,1)

Llog(1,0.1)

U(1,5)

U(2,25)

U(2,25)

U(2, 25)

U(2, 25)

U(2, 25)

U(2, 25)

U(2, 25)

U(2, 25)

U(2, 25)

U(2,25)

U(2,15)

U(2,2.5)
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1.9
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6

32.9

363.6
274.2
139.5

268.6
783.0
753.0

0.0
0.0
0.0

1079.2
776.7
565.6

25.5
304.9
449.2

2.4
96.7
166.9

0.0
9.9
26.3

0.0
0.0
0.0

892.4
781.2
578.8

1.4
29.3
67.5

0.0
0.0
0.0

921.8
704.1
511.1

473.8
405.5
328.8

154.4
30.8
0.9

2.1
0.0
0.0

0.0
0.0
0.0

1146.8
809.4
589.6

216.6
784.3
780.1

363.6 
274.2 
139.5

67.7 
547.4 
722.4

0.0
0.0
0.0

828.6 
794.5 
568.2

4.0
87.8
283.0

0.0
15.2
74.6

0.5
1.5
4.8

0.0
0.0
0.0

709.1 
794.3 
580.1

0.4
6.6 30.1

0.0
0.0
0.0

933.1 
706.2 
511.2

471.8 
405.5 
328.8

143.2
30.7
0.9

2.1
0.0
0.0

0.0
0.0
0.0

564.2 
795.6 
602.4

6.9 
117.9
478.8

1262.4
925.3
639.1

1548.5
1341.8
974.4

0.7
6.4
10.6

1835.7
1052.8
750.7

781.4
1232.6
1181.2

351.6
811.8
893.5

140.1
358.3
466.5

8.9
33.3
38.9

1758.5
1076.1
771.1

208.5
545.4
684.2

8.3
17.5
19.0

1564.6
957.6
695.3

1066.2
813.9
626.2

673.9
337.2
187.9

19.9
0.0
0.0

0.0
0.0
0.0

1894.2
1083.4
773.6

1533.2
1395.1
1014.9

1262.4
925.2
639.0

698.6
1361.9
1003.4

0.0
0.6
2.3

1820.6
1054.4
750.7

101.3
731.8

1075.4

33.9
328.0
658.2

6.1
71.9

228.7

0.0
2.5
8.5

1781.9
1079.4
771.2

27.3
181.5
402.8

0.0
3.1
5.3

1566.4
957.6
692.2

1060.3
813.9
626.2

560.0
335.8
187.8

15.8
0.0
0.0

0.0
0.0
0.0

1698.8 
1092.2
774.2

150.5
980.2

1163.2

1457.4
925.3
662.9

2352.4
1485.3
1049.3

72.7
112.5
131.8

2097.1
1205.9
859.5

1781.1
1765.2
1347.2

1210.1
1592.5
1509.7

663.8
1116.9
1138.4

138.4
245.1
286.7

2184.7
1246.2
886.8

871.4
1354.9
1405.5

94.7
183.6
186.3

1731.7
1030.1
738.2

1487.8
885.0
632.6

1315.7
956.3
771.3

107.6
1.2
0.0

0.0
0.0
0.0

2173.4
1235.6
878.1

2389.2
1533.2
1079.9

1457.4
925.3
662.9

1697.8
1556.3
1056.2

2.8
16.3
36.4

2123.6
1206.1
859.5

512.8
1578.4
1447.5

209.7
954.4

1334.4

60.9
442.5
780.0

2.0
51.0

110.7

2258.4
1246.9
886.8

147.2
695.6

1089.1

2.6
38.3
61.0

1733.8
1030.1
738.2

1478.3
885.0
632.6

1079.1
948.6
771.1

82.9
1.2
0.0

0.0
0.0
0.0

2179.9
1236.6
878.2

652.4
1697.0
1158.9

1540.9
925.3
662.9

2593.7
1376.4
967.1

1693.4
1825.8
1697.0

2464.7
1370.4
974.1

2831.5
1453.2
1013.6

2999.2
1576.3
1083.8

2852.5
1804.8
1211.3

2127.6
2039.2
1735.1

2493.3
1351.6
956.9

2979.6
1693.5
1147.0

1873.7
1934.8
1770.8

2430.4
1371.0
974.6

2464.4
1389.8
993.9

2561.6
1396.7
984.8

1997.8
1312.3
1001.0

298.9
17.3
0.7

2473.0
1344.3
946.0

2609.5
1372.1
962.9

1540.9
925.2
662.9

2701.1
1380.1
967.2

288.7
777.9

1063.8

2464.6
1370.4
974.1

2856.5
1489.4
1016.4

2476.9
1766.8
1108.9

1661.2
2064.8
1339.4

464.4
1239.6
1533.4

2506.1
1351.9
956.9

2181.9
1925.8
1208.1

396.3
982.4

1273.6

2430.4
1371.0
974.6

2467.0
1389.8
993.9

2525.9
1396.3
984.8

1290.3
1115.7
964.4

108.8
10.7
0.6

2473.1
1344.3
946.0

2769.2
1381.3
963.5

1540.8
925. 3
662.9

2237.4
1220.3
859.9

2111.5
1909.1
1468.5

2440.7
1369.7
974.1

2389.7
1244.9
867.3

2597.1
1299.7
896.5

2731.5
1401.2
953.1

2432.4
1842.7
1273.3

2236.7
1239.7
881.6

2686.6
1357.2
928.1

2260.9
1872.6
1388.7

2434.8
1371.1
974.7

2321.4
1275.2
895.3

2364.0
1253.9
869.9

2322.5
1455.7
1049.6

818. 9
246.7
102.9

2347.4
1283.6
906.0

2234.6
1204.3
847.7

1540.8
925.2
662.9

2313.9
1222.0
859.9

538.0
1191.8
1380.4

2440.7
1369.7
974.1

2557.6
1252.6
867.8

2578.2
1366.5
903.2

2129.2
1623.7
994.3

870.2
1616.8
1468.0

2244.2
1239.9
881.6

2531.5
1490.7
950.5

736.3
1422.9
1469.6

2434.9
1371.0
974.6

2322.1
1275.1
895.3

2348.1
1253.7
869.8

1690.0
1311.2
1025.4

306.2
116.6
68.0

2347.3
1283.6
906.0

2369.6
1206.4
847.6

1540.8
925.2
662.9

1932.2
955.9
974.5

2180.9
1326.4
843.2

2437.2
1369.7
974.1

1994.8
939.2
659.5

2085.6
952.2
662.9

2219.1
987.6
675.4

2269.5
1190.7
755.8

1994.8
1010.6
700.6

2165.9
975.7
672.6

2192.1
1264.6
794.1

2432.9
1371.0
974.6

2157.5
1118.2
791.5

2222.9
1190.8
845.3

2206.3
1176.7
854.9

1337.7
884.3
663.2

2279.5
1273.1
904.8

1914.1
936.9
660.6

1540.8
925.2
662.9

1878.6
956.3
674.6

1010.5
1364.2
1035.2

2437.2
1369.7
974.1

1973.7
939.1
659.4

2084.4
962.9
663.0

2098.2
1044.4
683.2

1352.1
1415.5
882.4

1970.3
1010.2
700.6

2173.6
1015.2
680.1

1208.7
1407.1
942.9

2432.9
1371.0
974.6

2157.6
1118.2
791.5

2216.2
1190.8
845.3

1968.9
1136.8
848.0

901.8
427.1
370.1

2279.4
1273.1
904.8

1865.4
937.8
660.6

Table 5: Simulated table for the sum of three lower and three upper deciles, with data generated from various distributions.
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Now applying the delta method a second time on 
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And by simplifying we derive our new variance estimator formula 
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var iEKM EKM
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S S

n n r
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≈     ∆ −   

∑                  (7)

Unlike Greenwood’s and Peto’s [12] variance estimators, our new 
variance estimator uses the exact waiting time between two consecutive 
events. However, if the data is free from censoring and the differences 
of times between events equals 1, the new variance is reduced to 
binomial variance.

Simulation study

In order to compare the performance of our exact waiting time 
survival function with Kaplan-Meier survival function, we designed 
three different simulation studies. First, we compared Kaplan-Meier 
survival function with exact waiting time survival function in terms of 
Pitman Closeness Criterion; second, we compared confidence interval 
coverage rates; and third, the width of confidence intervals between 
both methods.

Comparison of exact waiting time survival function and 
kaplan-meier survival function by pitman closeness criterion 

The Pitman Closeness Criterion [6] for two estimators at the 
selected points is defined as PCC = P{EKM – dt ≤ KM -  dt}

where dt’s denote the deciles of the distribution at t. The criterion 
states that the absolute error of exact waiting time survival function 
is smaller than that of Kaplan-Meier survival function if PCC > 0.5. 
We used the uniform distribution U (0, b) for generating censored 
survival times. As survival distributions, we choose (1) exponential, (2) 
weibull (with shape parameter 1.5, 0.5 i.e. monotone increasing and 
decreasing hazard rate) and (3) log-logistic (different shape parameter 
with monotone increasing, constant and decreasing hazard rate) 
distributions. 

For comparison, we choose points of the form ( )1
x jF d−  with fixed 

dj’s (d1=0.1, d3=.03, d5=0.5, d7=0.7, d9=0.9) and generated 5000 data sets 
of survival times with various sample sizes (n=15, 50, 100). For each 
data set of survival times, the censoring times were generated from the 
uniform distribution. The observed survival times have been obtained 
from the censored and survival times. In order to get discrete times, we 
considered the zero decimal points. Pitman Closeness Criterion was 
calculated for each data set. 

Table 3 and Figure 1 illustrate the results of our simulation study. 
At zero percent censoring, for all five deciles and sample sizes, the 
criterion gives results in favour of exact waiting time survival function. 
Also, by increasing censoring percentages, we observe similar results. 

Only in very few points exact waiting time survival function gives more 
PCC-error than traditional Kaplan-Meier method. The same situation 
can be observed from (Figure 1) with selected sample sizes. These 
results hold for small as well as for large sample sizes and for small to 
heavy censoring percentages.

Lower confidence limit coverage rate

Considering the same censoring and survival distributions, we 
inspected the coverage properties of asymptotic normal confidence 
intervals. By using the estimates of the survival function and standard 
errors, we construct the asymptotic normal (1–α) 100 percent 
confidence intervals as

( )

1

1 tan2

estimated survival function

estimated s dard error

ϕ
α

−
±

−

We construct the confidence intervals by using Kaplan-Meier 
survival function and the Greenwood standard error. Similarly, we 
construct the confidence intervals centred on exact waiting time 
survival function and our proposed standard error. Since the upper 
limit of exact waiting time survival function is 1, the lower limit may 
not approach to the conventional limit i.e. 0. Moreover, as the upper 
coverage rates give the same results as that obtained by Kaplan-Meier 
survival function and Greenwood standard error, we are mainly 
interested in the comparison of the following two coverage rates.

( )
^ 1 ^

1 2KM G KMS SE Sαϕ
−   − −  

  
                  (8)

and 

( )
^ 1 ^

1 2EKM EKMS SE Sαϕ
−

 
 

− −  
 
 

                  (9)

We used the same censoring and survival distributions, but with 
different percentages of censoring. Table 4 shows the simulated 95% 
coverage rates of the lower three deciles, as there are more chances 
of values falling below or equalling to zero. At zero censoring, both 
methods give the same coverage rate. This may be induced by the fact 
that the waiting times between events are close to 1. However, with 
an increasing percentage of censoring, the new method gives better 
coverage. Only in very few cases and for small censoring percentages, 
at some points, its coverage rates are smaller than that obtained by the 
traditional methods 

Width of confidence limits

A further simulation study was performed in order to examine the 
width of the intervals for the same censoring and survival distributions. 
We calculated the width for both methods by using the simple logic 
“Upper limit – lower limit“ for each simulation and took the sum 
over all simulations. The lower the width, the better the estimators. 
We considered the lower three deciles (d1, d2, d3) and the upper three 
deciles (d7, d8, d9), as in case of very heavy censoring, the lower deciles 
and their standard errors in most cases are undefined. Therefore, 
we also included the upper deciles to reach a general decision of the 
overall performance of both methods. The results of our simulation are 
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summarized in (Table 5). In censored free data, both methods gave the 
same results, but once again, as censoring increases, our new estimators 
give much smaller width than Kaplan-Meier and Greenwood standard 
error.

Application to a lung cancer data

We compared Kaplan-Meier survival function and exact waiting 
time survival function on a data set from the Veterans Administration 
lung cancer trial (presented by Prentice [13] and also used by Gupta 
[14]), where chemotherapy was induced to males with advanced 
inoperable lung cancer. For convenience, we considered the same part 
of the data set that Gupta used in his paper, consisting of 97 patients out 
of which 91 were events and 6 were censored. The survival times, given 
in days, were as following: 

72 228  10 110 314 100*  42 144  30 384  4  13 123*

 97*  59 117 151  22  18 139  20  31  52 18  51 122

 27  54  7  63 392  92  35 117 132 162  3  95 162

216 553 278 260 156 182* 143 105 103 112 87* 242 111

587 389  33  25 357 467  1  30 283  25 21  13  87

 7  24  99  8  99  61  25  95  80  29 24  83*  31

 51  52  73  8  36  48  7 140 186  19 45  80  52

 53  15 133 111 378  49

* denotes a censored observation.

Table 6 (included as supplementary data) summarizes the data and 
methods in 11 columns, where column 1 shows the time in days, column 
2 the number of person’s at risk (ni), followed by the event column 3 
(ri). Column 4 shows the number censored (ci) at different times. Δ 
is the heading of column 5 and represents the waiting time between 
two consecutive events. As the first Δ is 1, the difference between first 
and second waiting time is 3-1=2 days, and so on we calculated the 
other waiting times. The next two columns represent Kaplan-Meier 
survival function and exact waiting time survival function, whereby 
both have the same value at first event, i.e. the first observed time. The 
important role of the concept of waiting times starts at the next stage, 
as from here both methods give different results in terms of survival 
probabilities This difference continues to exist through to the end of 
the analysis. Since the last observed time 587 (days) is an event, Kaplan-
Meier survival function gives the value zero, while exact waiting time 
survival function yields a survival probability at that time equalling to 
0.312. This is due to the fact that the waiting time between the last two 
observed events is greater than 1, i.e. 587–553= 34. 

Lower confidence limits of Kaplan-Meier survival function and 
exact waiting time survival function are shown in columns 8 and 9. 
Here, we do not round the negative limit to zero, as we want to check 
the full behaviour of the two methods. We can see from the columns 
that the lower limit constructed by Kaplan-Meier gives 16 negative 
limits, while when constructed by exact waiting time survival function 
all these values are greater than zero. This shows that exact waiting 
time survival function is a type of left Shrunken Kaplan-Meier survival 
function and gives better results at this end. The next two columns give 
the upper limits of both methods and again we give the full estimates. 
In case of Kaplan-Meier survival function, there are 3 values greater 
than 1, while our exact waiting time survival function gives 4 values, 
due to a higher survival probability by this method at that point. Except 
this, the other limits settle down to routine. The last two columns give 
the widths of intervals for the two methods. We can see that at each 
time the width of confidence intervals constructed by exact waiting 
time survival function is smaller than that obtained by Kaplan-Meier 
survival function. These findings are also shown in (Figures 2 and 3). 

Discussion
Kaplan-Meier survival function, which is a non-parametric 

technique of survival analysis, remains a reliable and frequently used 
method in medical research, as it is easy to understand, calculate and 
interpret. For the construction of confidence intervals, Greenwood 
variance estimator is commonly used. However, they both share the 
drawback of giving same results for two diseases of different nature, by 
ignoring waiting times between two consecutive events. In light of this 
deficiency, in this paper we proposed an exact waiting time survival 
function and a modified variance estimator. Unlike the traditional 
methods, these new estimators explicitly consider the waiting time 
between two events. The new methods perform equally well for 

Figure 2: KM and EKM survival functions for the lung cancer data set.
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Figure 3:Confidence interval widths of both methods for the lung cancer data 
set.



Citation: Zaman Q, Strasak AM, Pfeiffer KP (2011) Exact Waiting Time Survival Function. J Biomet Biostat 2:117. doi:10.4172/2155-6180.1000117

Volume 2 • Issue 3 • 1000117
J Biomet Biostat
ISSN:2155-6180 JBMBS, an open access journal

Page 9 of 9

both, small and large sample sizes. Similarly, as censoring increases, 
the performance of our new estimators increases as well. The new 
estimators give better coverage rates for the lower confidence limits 
and yield in considerably smaller width of confidence intervals. Finally, 
the simplicity of theses estimators make them attractive for use in 
different fields of medical research.
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