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Abstract
GPR109A was discovered recently as the G-protein coupled receptor for niacin (nicotinic acid), a drug used 

widely in the treatment of hyperlipidemia. Upon its initial discovery, expression of the receptor was thought to be 
restricted primarily to adipocytes and immune cells (monocytes/macrophages), a pattern of localization consistent 
with the known actions of niacin – anti-lipolytic and anti-atherogenic. Of late however, several new reports have 
arisen detailing expression of the receptor in other cell and tissue types. Interestingly, with the exception of dermal 
Langerhans cells, the cells responsible for skin flushing, an unwanted side effect of high-dose niacin therapy, the 
function of the receptor in the additional cell types described is largely anti-inflammatory in nature. The receptor 
might also have a role in cancer; silencing of the receptor has been reported in colon and breast cancers, and forced 
expression of the receptor in tumor cells induces apoptosis, thereby suggesting a tumor-suppressive role for the 
receptor. This supports strongly not only the critical importance of GPR109A expression and activity under normal, 
basal conditions, but also the strength in impact that therapies capable of augmenting or optimizing its expression 
and activation may have in thwarting the development and progression of inflammation and cancer. Given the key 
causative role of inflammation in diabetic retinopathy, and the critical lack of viable strategies for intervening early 
in this pathology, new therapies, particularly those targeting inflammation, are sorely needed. Herein, we describe 
preclinical and clinical studies documenting the expression of GPR109A, the pleiotropic effects elicited in response 
to its activation and the underlying mechanisms to explain these actions. This information we discuss in the context 
of its relevance to diabetic retina, ultimately providing insight into strategy for future targeting of the receptor and 
development of new therapies for prevention and treatment of retinopathy in diabetes.
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Introduction
Diabetic retinopathy (DR), one of the most common and feared 

complications of diabetes, is the leading cause of irreversible vision 
loss and blindness among adults of working-age in the U.S. and other 
industrialized countries [1,2]. The incidence of DR is high; nearly all 
type 1 patients and greater than 60 percent of patients with type 2 
diabetes develop DR within the first 1-2 decades of their disease. In 
fact, at the time of diagnosis, signs of retinopathy are already detectable 
in many type 2 diabetic patients. Hyperglycemia is a primary factor 
in DR pathogenesis and while correcting it through maintenance of 
tight glycemic control (a task that is difficult in many patients) helps, 
it does not mitigate entirely DR development and progression [1,3]. 
There are at present treatments for DR (e.g., laser photocoagulation, 
vitrectomy, intravitreal anti-VEGF therapy); however in addition to 
being associated with adverse effects, these therapies are applicable 
only at the late stages of the disease when the signs and symptoms of 
proliferative microvascular disease present. But unfortunately, at these 
late stages, DR has already reached a relatively advanced state. Hence, 
there is a critical need for new, viable strategies for DR prevention and 
treatment.

Inflammation is implicated as a key causative factor both in the 
development and progression of DR [3-6]. Indeed, diabetes itself is 
recognized as a chronic, low-grade inflammatory disease. Congruent 
with this is a burgeoning literature suggesting strongly that therapies 
that reduce inflammation in retina may block early cellular and 
biochemical alterations in this tissue long before they become clinically 
evident. Thus, strategies to intervene within this “early” time frame 
have a high likelihood of effectively preventing or slowing progression 
of DR to advanced stage retinal disease and thereby, preserving vision 

and quality of life in a large number of persons. We identified recently 
in retina a new target, the G-protein coupled receptor GPR109A, that 
when activated therapeutically in diabetes could potentially fit this bill. 
In this short review, we discuss the clinical and experimental evidence 
that forms the basis of this rationale.

History of the Niacin Receptor, GPR109A
In 2003, GPR109A, also known as hydroxycarboxylic acid receptor 

2 (HCA2) and formerly as HM74A in humans and PUMA-G (Protein 
Upregulated in MAcrophages by Interferon-γ) in rodents, was identified 
as the high-affinity receptor for niacin [7-10]. A second receptor with 
a high degree of homology to HM74A but a much lower affinity for 
niacin, HM74 (GPR109B), was also reported; however, its exact 
physiologic role remains unclear. Upon its initial discovery, GPR109A 
expression was thought to be limited primarily to adipocytes, the cell 
type in which the anti-lipolytic effects of niacin are most warranted. 
Niacin has been used widely to treat hyperlipidemia and remains 
today, five decades following its initial introduction, as one of the 
most effective agents for lowering low-density lipoprotein (LDL; “bad” 
cholesterol) and increasing High-Density Lipoprotein (HDL; “good” 
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cholesterol). In contrast, newer therapies such as HMG-CoA reductase 
inhibitors (statins) and fibric acid derivatives are effective only in 
reducing the LDL cholesterol [11,12]. Congruent with its improvement 
of lipid/lipoprotein characteristics, niacin is touted also for its ability 
to reduce vascular inflammation and thrombosis and therefore lower 
significantly the risk of atherosclerosis, stroke and other cardiovascular 
events, properties that we now know to be a direct consequence of its 
interaction with and subsequent activation of the Gi-protein coupled 
receptor GPR109A [13]. This entire highlighted sentence should be 
revised to read “The efficacy of niacin in slowing the progression of 
atherosclerosis and reducing cardiovascular events and mortality in 
patients with hyperlipidemia and the involvement of GPR109A in 
these actions is supported by a wealth of clinical and experimental 
evidence [14], though some recent studies have challenged these views.

Along with the identification of GPR109A as the receptor for 
niacin, came additional studies devoted to characterizing in detail the 
expression and function of the receptor in various cell and tissue types. 
Out of these studies came the identification of β-hydroxybutyrate and 
butyrate as endogenous receptor agonists [15,16], and importantly, the 
revelation that the benefits of activating the receptor therapeutically 
extend far beyond the alteration of lipid profiles [17,18]. In immune 
cells, cells central also to the development and progression of 
atherosclerotic lesions/cardiovascular disease, GPR109A activation 
was found to elicit robust anti-inflammatory responses by way of 
suppressed pro-inflammatory cytokine and chemokine expression and 
signaling [19]. The same anti-inflammatory effect was described also 
in adipocytes [20]. Additional studies involving mouse and human 
endothelial cells demonstrated the potentiation of responses that were 
both antioxidant and anti-inflammatory in nature in association with 
GPR109A activation [11,21,22]. Investigations into the role of the 
receptor under normal physiologic conditions and the consequences 
of its activation by endogenous ligands (e.g., β-hydroxybutyrate, 
butyrate), which happen to be intermediates of normal metabolism, led 
to the discovery of a role for the receptor also in nutrient sensing and 
energy regulation, and in tumor suppression [17,23,24].

GPR109A Expression in Retina and Rationale for 
Therapeutic Targeting in Diabetes

As detailed above, the major cellular properties attributed to 
GPR109A-dependent signaling to date can be described in sum as: 
lipid-modulatory, anti-inflammatory, anti-oxidative, and energy 
regulating. The underlying molecular mechanisms to explain these 
actions include regulation of the activity of lipolytic enzymes (i.e., 
hormone-sensitive lipase in adipocytes) and cholesterol efflux transport 
proteins [7-10,15,25]; suppression of Nuclear Factor Kappa-B (NF-
kB) signaling [16]; Peroxisome Proliferator-Activated Receptor-
Gamma (PPAR-γ) activation [26]; and regulation of monocarboxylate 
transporter expression and functional activity [24]. Alone, each of 
the aforementioned responses is highly desirable in diabetic retina; 
however, the discovery of a single receptor with the potential to 
influence them collectively is extremely significant with respect to 
developing new, targeted therapies for DR prevention and treatment.

The involvement of inflammation and oxidative stress in DR 
pathogenesis is undeniable. While there are conflicting opinions as to 
the existence of a concrete link between atherosclerosis/cardiovascular 
disease, the pathology for which therapeutic intervention via GPR109A 
activation is most noted, and DR incidence and severity [27], clinical 
and experimental evidences support overwhelmingly a definitive 
correlation between the two [28,29]. Hence, enthusiasm in this 

regard is in no way diminished. Indeed, altered lipid metabolism and 
lipoprotein abnormalities are not only well established features of 
diabetes but more specifically, of diabetic retina. Hypertriglyceridemia 
is common in type 1 diabetes and even more so in type 2 diabetes, with 
type 2 patients commonly presenting with reduced HDL-choleserol 
levels in addition to hypertriglyceridemia [30]. In retina specifically, 
the size and density of hard exudates in diabetic patients is thought 
to be reflective directly of the severity of alteration in retinal lipid 
profiles [31,32]. Whether patients under niacin therapy suffer less by 
diabetic retinopathy has not been evaluated specifically. However, 
fibrates and statins, well-known anti-hyperlipidemic agents, have been 
shown to reduce significantly the risk of advanced DR development 
and progression both in human patients and experimental models 
of disease [31-35]. There are an increasing number of new reports 
citing the benefits of niacin-GPR109A signaling in the treatment of 
pathologies other than hyperlipidemia (e.g., multiple sclerosis, septic 
shock, lung inflammation and fibrosis, renal failure, ischemia-induced 
neovascularization and peripheral vascular dysfunction in diabetes) 
[36-40]. This coupled with the fact that niacin, the prototypic GPR109A 
agonist, elicits additional, unique actions atop its lipid-lowering effects 
via its interaction with GPR109A raises the question as to whether 
similar or added benefit might be attained upon therapeutic targeting 
of the receptor in DR. This is a question well worthy of investigation. 
However, before progress can be made toward addressing this issue, 
the expression of GPR109A in retinal cell types and intact retina must 
be characterized fully and its functional significance therein elucidated.

Along these lines, in 2009, we reported for the first time ever, 
expression of GPR109A in retina [41]. Evaluation of cross sections 
of mouse retina and transformed human and rodent retinal cell 
lines revealed the localization of the receptor in Retinal Pigmented 
Epithelium (RPE) and more specifically, to the basolateral membrane 
of this cellular layer. This localization is ideally suited for interaction of 
the receptor with ligands, endogenous or pharmacologic, presenting 
from the choroidal circulation. Our subsequent inquiry into the 
functional significance of RPE-specific GPR109A expression led 
to the discovery of a potent role for the receptor upon its activation 
by exogenous niacin or β-hydroxybutyrate in the mediation of anti-
inflammatory signaling not only in cultured RPE cells [42], but also in 
intact mouse retina as evidenced by the suppressed expression (mRNA 
and protein) of pro-inflammatory molecules such as Interleukin-1β 
(IL-1β), Monocyte Chemotactic Protein-1 (MCP-1), Intercellular 
Adhesion Molecule-1 (ICAM-1) and, the reduction of other notable 
hallmarks of retinal inflammation such as increased leukostasis 
(unpublished results). Further investigation into the effects of diabetes 
on receptor expression led to the revelation that not only does retinal 
expression of GPR109A persist in diabetes (both type 1 and type 2 
diabetes - determined by analysis of receptor expression in post-
mortem human retina and in rodent models of diabetes) but, that it 
appears to be upregulated in this condition [42]. While this confirms 
the presence and availability of the receptor for targeting in diabetic 
retina, the functional significance of its upregulation remains to be 
determined. We postulate that it represents a mechanism by which the 
tissue tries to stop the progression of the damage caused by the disease, 
one precluded by the absence of an endogenous agonist present at levels 
sufficient to augment maximally the beneficial effects of GPR109A 
signaling. In healthy individuals, β-hydroxybutyrate, a principal ketone 
and physiologic GPR109A agonist, is present in the circulation, but at a 
relatively low concentration, increasing only slightly during periods of 
fasting or prolonged exercise. Ketone bodies serve as alternate sources 
of energy to maintain crucial organs such as the brain, retina, heart, 
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kidney cortex and skeletal muscle when carbohydrates are either in 
short supply or as is the case in diabetes, cannot be used effectively [43]. 
Hence, in well-controlled diabetes, significant increases in circulating 
β-hydroxybutyrate do not occur. Though seemingly protective in 
moderation, when elevated excessively, as in uncontrolled diabetes, 
the effects of β-hydroxybutyrate are thought to be largely detrimental 
(e.g., ketoacidosis). This suggests that despite the presence of both the 
receptor and the agonist in such conditions, activation of the receptor 
may not occur at the optimal level and hence the beneficial effects of 
receptor signaling are lost. It is also plausible, particularly at such high 
concentrations, that additional, GPR109A-independent mechanisms 
come in to play. Thus, if receptor activation can be augmented 
optimally through the use of pharmacological agonists, robust benefits 
may be reaped in diabetic retina. Support for this line of thought and 
therefore the therapeutic targeting of GPR109A in diabetic retina can be 
inferred from the recent report by Poplawski et al. [44] demonstrating 
pronounced and effective reversal of parameters associated with 
progression and increased severity of diabetic nephropathy, another 
major complication of diabetes, through employment of a ketogenic 
diet, a diet in which β-hydroxybutyrate is the predominant ketone. 
Additional support can be gathered from a study by Huang et al. [40] 
in which the authors report niacin-induced improvement of blood 
flow and peripheral vascular function in a diabetic rodent model of 
ischemia-reperfusion through mechanisms involving the modification 
of nitric oxide bioavailability and reduction of oxidative stress, and 
from clinical and experimental studies of neurodegenerative brain 
diseases touting the cellular protective effects of β-hydroxybutyrate 
when employed therapeutically [45].

Inflammation and reactive oxygen species production are normal 
physiologic processes. Inflammation is essential to cellular defense, 
repair and turnover and reactive oxygen species are produced normally 
as a consequence or byproduct of many normal biologic processes. 
Therefore, cells, including those of the retina, are naturally equipped 
to deal with these factors, as they must on a regular basis, in order to 
maintain tissue homeostasis. In pathologic conditions such as diabetes 
and DR however, the increased production pro-inflammatory and 
pro-oxidant factors coupled with the decrease in the cellular defense 
machinery, influences negatively the delicate balance between pro-
inflammatory/pro-oxidant and anti-inflammatory/antioxidant factors; 
this has been documented and described on numerous occasions 
[4,5,46,47]. Therefore, could it be that when elevated in moderation, 
β-hydroxybutyrate activates GPR109A expressed by neurons, RPE, and 
other cell types, thereby conferring protection against inflammation, 
oxidative stress and other types of cellular insult but, in extreme excess 
(i.e., ketoacidosis) it tips the scale in the opposite direction, favoring 
increased inflammation, oxidative stress and cellular damage? The 
likelihood of an affirmative answer to this question is strengthened 
by the fact that niacin, when taken at lower doses (< 1 g daily) has 
proven to be quite effective at improving lipid profiles and reducing 
the risk of atherosclerosis and cardiovascular disease development and 
progression in a large number of patients; however, when given at very 
high doses (3.0 – 4.5 g daily), use of the compound, while still effective 
in the aforementioned parameters, is associated with three major side 
effects [11]. The first is flushing, an effect that we now know to be due to 
the unwanted effects of this compound/GPR109A activation in dermal 
Langerhans and keratinocytes [48]. The second and third, respectively, 
are a reversible form of cystoid maculopathy (occurs only in 0.67% 
of patients), and modest hyperglycemia [11,49]. These undesirable 
effects have fueled the search for lipid-lowering therapies in lieu of 
niacin. However, of the alternative therapies discovered and employed, 

the fact remains that none have proven to be as effective as niacin at 
raising HDL levels and improving additional parameters consistent 
with reduced risk of advanced cardiovascular disease; for this primary 
reason, the clinical use of niacin has continually been revisited. Indeed, 
the recent introduction of immediate-release and extended-release 
forms of the niacin brings the compound back to the forefront as the 
incidence and severity of the adverse effects associated with its use 
has been reduced significantly even when the agent is employed at 
very high doses while retaining the benefits attributed to the original 
compound [11]. Of specific interest and relevance to our present 
topic, the potential employment of GPR109A agonists for therapeutic 
management of DR, is the fact that the incidence of ocular side effects 
(niacin maculopathy), which was already relatively low, appears to 
have diminished even further as evidenced by the few, rare reports 
that can be found in the published literature over the past decade. The 
same is true with respect to niacin-induced deterioration of glycemic 
control in diabetic patients, which is now reported as being only minor 
with no evidence of increased incidence of new onset diabetes [11,50]. 
Furthermore, the avoidance or lessening of the flushing response is 
important, as it may impact positively patient compliance rates. The 
discovery by Walters et al. [51] that niacin-induced signaling through 
beta-arrestin 1 is responsible for flushing but not for the anti-lipolytic 
effects of the compound suggests that relevant compounds that activate 
GPR109A in a beta-arrestin-independent fashion could be developed. 
Hence, targeting GPR109A for therapeutic management of DR, 
whether by the use of niacin, other newly identified pharmacologic 
ligands like monomethylfumarate [49,52] or alternately, intake of a 
ketogenic diet to increase the endogenous agonist β-hydroxybutyrate, 
remains as a feasible and seemingly viable option that should be 
explored further. The appeal for such is heightened by the fact that it 
might be accomplished successfully via the re-purposing of existing 
compounds or strategies that have already garnered FDA-approval for 
treatment of other indications and therefore much is known regarding 
the toxicological and pharmacokinetic properties in humans.

The demonstration of GPR109A expression in RPE and its function 
there in modulating inflammation is a novel and important finding. 
RPE facilitates numerous functions that are critically essential to retinal 
health and visual function normally and in diabetes including the 
regulation of immunity and inflammation in the outer retina via the 
expression and secretion of a plethora of cytokines and chemokines, 
maintenance of outer-blood retinal barrier integrity, phagocytosis of 
shed photoreceptor discs, cholesterol transport/lipid homeostasis, light 
absorption, amino acid and nutrient transport, etc. [53,54]. However, it 
is clear that in DR other retinal cell types are largely affected [55]. There 
are a number of studies suggesting strongly that processes similar 
to those that promote and/or potentiate atherosclerogenesis occur 
also in diabetic retina [56,57]. A role for inflammation and oxidative 
stress in DR has been established. Atop this are clinical studies 
demonstrating retinal dysfunction and cellular damage in association 
with lipid accumulation in this tissue [31,32,58] and experimental 
studies demonstrating the critical causative role of dyslipidemia in 
endothelial cell dysfunction and vascular inflammation in retina [59]. 
Could GPR109A in retina be expressed by retinal cell types in addition 
to RPE, and upon activation therein contribute to the propagation 
of multiple, unique responses that are, like the demonstrated actions 
associated with GPR109A expressed in other organs, overwhelmingly 
beneficial (i.e., improved retinal lipid profiles, reduced inflammation 
and oxidative stress, protected and preserved retinal cell viability and 
vascular integrity/function)? Along these lines, our group has initiated 
additional studies. Using primary rat microglial cells isolated following 
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the method of Roque and Caldwell [60], a generous gift from the 
laboratory of Dr. Gregory Liou (Georgia Regents University, Augusta, 
GA), and our rabbit polyclonal GPR109A antibody [41], we evaluated 
GPR109A expression by Western blotting techniques per our published 
method [61] (Figure 1). Protein extracted from primary RPE cells that 
were isolated from normal mouse retinas as described previously 
[41] was included as a positive control. Microglia are in essence the 
resident macrophage cells of the retina; their critical involvement 
in potentiating inflammation and therefore the development and 
progression of diabetic retinopathy is well documented [62-64]. Our 
studies have shown that microglia express GPR109A robustly. Though 
novel, the finding of GPR109A expression in these cells did not come 
as a surprise given the original description of the receptor protein as 
PUMA-G (protein-upregulated in macrophages by interferon-γ) and 
the well established role of these cells in the mediation of inflammatory 
processes in retina. However, additional studies to ascertain fully the 
functional significance of GPR109A expression and activation in this 
retinal cell type normally and in diabetes are needed. Similar studies are 
also needed with retinal endothelial cells; our preliminary work in this 
regard leads us to believe that the consequences of GPR109A activation 
in these cells will be, as described for peripheral vascular endothelial 
cells, largely anti-inflammatory.

Conclusions
Based on existing clinical and experimental evidence and our 

own published and preliminary findings, we speculate that GPR109A 
expression in retina is essential to the normal regulation of multiple 
parameters, both lipid-dependent and lipid-independent (e.g., 
inflammation, the metabolism and handling of lipids, nutrient sensing 
and energy regulation). Hence, therapies to target this receptor in 
diabetes may be effective in preventing or slowing the development and 
progression of DR (Figure 2). Additionally, there is the promise that 
such strategies could be of benefit also in the prevention and treatment 
of other debilitating retinal diseases in which inflammation, oxidative 
stress and/or altered lipid regulation are majorly involved such as for 
example, age-related macular degeneration.
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