
Volume 6(3): 112-117 (2013) - 112 
J Comput Sci Syst Biol       
ISSN:0974-7230 JCSB, an open access journal  

Research Article Open Access

Sakai and Wei, J Comput Sci Syst Biol 2013, 6:3 
DOI: 10.4172/jcsb.1000108

Research Article Open Access

Keywords: Electrocardiogram; Fractal dimension; Short-duration
TWA; Sudden cardiac death; T-wave alternans

Introduction
Microvolt T-wave alternans

To assess the risk of Sudden Cardiac Death (SCD), several 
electrocardiograms (ECG)-based predictors have been proposed in [1]. 
Among these, T-wave alternans (TWA) is one of the most promising 
predictors of SCD [2,3], which is defined as a beat-to-beat change 
in the amplitude of the T-wave that repeats once every other beat. 
Because visible TWA is rarely found in clinical diagnoses, effective 
computerized methods are necessary to detect invisible TWA or 
Microvolt TWA (MTWA) [4].

Previous research on quantification of T-wave alternans

Of the various automatic algorithms to detect or quantify MTWA 
that are currently available, two algorithms are considered to be 
mainstream for MTWA analysis. The first one, which is regarded as 
the gold-standard algorithm, is based on the periodogram proposed 
in Smith et al. (1988) [5,6]. In this method, ST-T segments of 128 
beats are aligned, and the periodogram-based cycle per beat (cpb) 
frequency analysis is performed for each sample. Then, the value of 
an aggregate spectrum at 0.5 cpb is compared with the noise level to 
determine the presence of TWA. This algorithm has been included 
in the commercial equipment such as CH2000 Cardiac Diagnostic 
System of Cambridge Heart. The other mainstream technique is the 
Modified Moving Average (MMA) method [7]. The MMA method is 
based on a time-domain analysis procedure that consists of computing 
a recursive running average of odd and even beats. This algorithm 
has been specially improved for the measurement of ambulatory 
ECG. Measuring equipment that uses the MMA method has also 
been implemented in the “CASE-8000” Stress System of GE Medical 
Systems.

Martinez and Olmos [8] have reviewed various other MTWA 
analysis methods. They have defined a unified methodological 
framework of TWA analysis to compare 12 methods with one other, 
including complex demodulation [9], KL transform [10], Poincaré 

mapping [11], periodicity transforms [12], the Laplacian likelihood 
ratio [13], the correlation method [14], and the capon filtering method 
[15].

In more recent years, Boix et al. presented the TWA detection 
method in a continuous wavelet component [16] using simulated 
TWA dataset. They suggested TWA detection at the level of wavelet 
decomposition j=9. Rajabi and Ghassemian [17] proposed the 
Lyapunov exponents-based method but this algorithm was not effective 
unless TWA value was sufficiently large (>100 μV). In addition, 
Goldberger et al proposed a nonnegative matrix factorization (NMF) 
algorithm for detection of beat-to-beat T-wave change [18]. However, 
as we will discuss later, this algorithm also has a limitation in relation 
to a required number of T-wave. 

Quantification of short-duration t-wave alternans and the 
fractal dimension algorithm

TWA is classified as sustained or long-duration TWA (LDTWA), 
which is derived from 64 or more consecutive heartbeats, or as non-
sustained variation, which is defined as a short-duration TWA 
(SDTWA) derived from 16 or fewer consecutive heartbeats [18]. 
Approximately 3.0% of patients who succumbed to SCD were identified 
in clinical studies [19] using either LDTWA or SDTWA. On the other 
hand, the identification rate increased to approximately 6.0% when 
both LDTWA and SDTWA were used simultaneously. This result 
indicates a significant improvement in accuracy when both LDTWA 
and SDTWA are used simultaneously to assess the risk of SCD. 
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Abstract
The presence of T-Wave Alternans (TWA) in an electrocardiogram (ECG) has been certified as an important 

predictor for the risk of sudden cardiac death (SCD). TWA is a beat-to-beat change in the amplitude of a T-wave, but 
is rarely visible to the naked eye. Thus, automatic detection and quantification of TWA are desirable. While several 
automatic algorithms, such as the periodogram method or the modified moving average method (MMA), have been 
developed to detect or quantify TWA, most conventional methods do not effectively measure short-duration TWA 
(SDTWA) (<16 beats). In this paper, we proposed a fractal dimension based SDTWA quantification method, and 
evaluated it with simulated ECG signals with SDTWA episodes (<16 beats) based on the European ST-T database. 
In the evaluation, the proposed method was applied to ECG signals with TWA amplitude of 5, 15, 30, 45, 60 and 75 
μV. Sensitivity and positive predictivity of over or closed to 90% were obtained except for the 5 μV SDTWA episodes. 
Even for 5 μV SDTWA episodes, the sensitivity reached 75%. We believe that proposed s fractal dimension based 
method is a promising method for SDTWA analysis.
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Application of the TWA to the prediction of ventricular tachycardia 
revealed that prominent TWA followed the onset of torsade de pointes 
ventricular tachycardia, but that it was intermittent and appeared only 
for a short time series [20]. This type of TWA can be regarded as an 
SDTWA.

Most existing methods, such as the periodgram method as an 
example, require a large number of beats, and usually are not suitable 
for SDTWA. On the other hands, the Nonnegative Matrix Factorization 
(NMF) based method is designed for beat-to-beat analysis; it needs a 
decomposition procedure [18], which still requires a large number of 
beats to decompose T-wave time series in time-frequency area. It is 
therefore a fact that an appropriate method is required for detection of 
SDTWA in the exactly sense of short time ECG series. 

In this paper, we propose a fractal-dimension-based method 
[21] for SDTWA, because it can be calculated from short time series. 
Furthermore, the fractal dimension is often used for the analysis of 
Heart Rate Variability (HRV), being effective to quantify a fluctuation 
of bio-signal. For example, literature [22] showed that the fractal 
dimension could distinguish fluctuations of HRV between normal and 
stroke subjects. 

Methods are described and evaluation using European ST-T 
database is presented in the following sections. It will be shown that 
fractal dimension is identified to be able to quantify the fluctuation of 
ECG time series, and is promising for our goal.

Methods
Three-stage unified framework for MTWA analysis

A generic framework for TWA analysis was described by 
Martinez and Olmos [8]. This framework is composed of three stages: 
preprocessing, data reduction, and TWA analysis, and each stage have 
been further subdivided into several steps.

The preprocessing stage consists of linear filtering, baseline 
wander removal, QRS detection, beat rejection, segmentation window, 
alignment, and segment matrix filtering. The first three of these steps, 
linear filtering, baseline wander removal, and QRS detection, are 
common to all other ECG-based diagnosis techniques. In the beat 
rejection, ectopic beats or unstable R-R interval periods are rejected 
using the following procedure. The rejection is performed for pairs of 
odd and even beats. To calculate the TWA value using the following 
steps, the segment where the TWA value is computed must be 
determined in advance. In most studies, a T, ST or ST-T segment 
(say “window”) is selected with a fixed length L. In the alignment 
step, M beats of the ECG signal are mapped onto a L M×  segment 
matrix

0 1, , MX x x − =  

, where [0], , [ 1]
T

i i ix x x L = − 

 is the ith segment. 
In the segment matrix filtering step, row-or column-wise filtering is 
performed for the aligned segment matrix X .

The data reduction stage does not directly affect the accuracy of 
TWA detection and quantification. In this step, L is reduced to a small 
number in such a way as to decrease computational cost. For example, 
it can be implemented using the decimation [8]. However, this step is 
not performed in this research. 

In the TWA analysis stage, the presence or absence of TWA is 
estimated, and then the TWA value is calculated by a method such as 
the periodogram method or MMA.

In the present paper, we follow the above framework to introduce 
our method for the calculation of the TWA value.

Fractal-dimension-based TWA analysis method

Figure 1 shows the processing flow of the proposed method. In 
our method, linear filtering, beat rejection, and data reduction are not 
performed.

Baseline wander removal: In the proposed method, the baseline 
wander removal is achieved by fast Fourier transformation (FFT). First, 
the raw ECG signal is transformed into the frequency domain, and 
then the low-frequency bands are set to zero. Finally, inverse FFT is 
performed so that the ECG signal is obtained without baseline wander. 
The FFT-based baseline removal was also used in the program that 
achieved the highest score (0.911) in the competition of PhysioNet and 
Computers in Cardiology [23].

QRS detection: In this study, the wavelet transform was employed 
for QRS detection in time-frequency area [8].

Segmentation window and alignment: To calculate the TWA 
value, only peak values of the T-wave is considered in this study. In 
this case, we considered the length of segment L=1, and the segment 
matrix and 1 M×  matrix (a series of T-wave amplitudes). The peak of 
the T-wave is detected as the peak value between location of the k-th 
QRS peak plus 20 samples and that of the (k+1)th QRS peak minus 20 
samples.

Segment matrix filtering: In this research, row-wise segmentation 
matrix filtering is applied. This filtering has two steps: the correction 
of outlier beats and detrending of the segment matrix. The correction 
of outlier beats was inspired by the robust statistics [24] as described 
below.

As its name suggests, the magnitude of MTWA is microvolt-order. 
Therefore, a change of more than millivolt-order can be regarded not 
as a fluctuation due to TWA but as the outlier beat for TWA analysis. 
For general robust statistics, outliers are corrected using a threshold 
value that is calculated using information from all the beats. In this 
research, threshold values are separately calculated for odd and even 
beats because it is expected that amplitudes of odd and even T-waves 
would be different if TWA occurs. In a period containing TWA, 
averages of odd and even T-wave amplitudes differ from each other, 
because a magnitude relation between odd and even beats must become 
conspicuous. Thus, it makes sense to separately calculate threshold 

Figure 1: Processing flow.
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values for odd and even beats. Noting that Xodd is the segment matrix 
for odd beats and Xeven is that for even beats, Eq. (1) defines a particular 
standard deviation oddMAD  for the odd beat segment matrix Xodd that 
is expected to be unaffected by outliers.

(| ( ) |) / 0.6745odd odd oddMAD median X median X= −                                          (1)

evenMAD  is calculated in a similar fashion in terms of the even 
beat segment matrix evenX . The scale factor 0.6745 makes the estimate 
unbiased for the normal distribution [24].

The correction of outlier beats for the segment matrix of odd beats 
is performed as follows:

( ) ( )
( ) ( )

odd odd odd odd

odd odd odd odd odd

S
odd

median X if X median X c MAD

X median X if X median X c MAD

X else

 > + ×

= < − ×





                           (2)

Where c is a constant set to 10, the segment matrix of even beats 
is corrected similarly. Figure 5 is an example showing results of outlier 
beats correcting.

After the correction of outlier beats, the segment matrices for odd 
and even beats are united into single segment matrix. 

To detrend, an approximative straight line of corrected segment 
matrix is estimated using a least squares approximation polynomial, 
then subtracted from corrected segment matrix to obtain detrended 
segment matrix.

TWA Analysis

The fractal dimension, an index to measure the irregularity of 
signals, is proposed be the TWA value. We use here the algorithm of 
Higuchi [21], which is a straightforward method to extract the fractal 
dimension of time series data, as follows.

Suppose that we have time series,

( ) ( 1, , )X i i N= 

, 				                       (3)

Where N (<M) is the number of beats from which the fractal 
dimension is computed. For SDTWA detection in this study, N=16 is 
selected. With respect to )(iX , the length of the curve ( )( 1, , )mL k m k= 

 
is calculated as 

[ ]( ) /

1

1 1( ) ( ) ( ( 1) )
N m k

m N m
i k

NL k X m ik X m i k
k k

−

−
=

   − = + − + −         
∑ ,	                     (4)

Where [ ] denotes Gaussian notation and m  and k  indicate the 
initial time and the interval time, respectively. In this research, k  was 
set to 6 because scores were typically high for all N. The length of the 
curve for time interval k  is defined by 

1

1( ) ( )
k

m
m

L k L k
k =

= ∑ . 				                    (5)

If the curve has fractal properties, )(kL  will be proportional to
Dk − , where D is the fractal dimension. This can be determined from 

a log-log plot of )(kL against k , which gives a straight line with slope 
–D. In particular, the fractal dimension D is calculated as the coefficient 
–D of primary expression ))(log(kP to ))(log( kL  by the least squares 
approximation.

An example of calculation of the fractal dimension is shown in 
Figure 2.

Presence/Absence estimation: After calculation of D, a threshold 
method is performed to estimate presence of SDTWA episode. 
Concretely, the fractal dimension D is compared to a threshold level. 
If D is larger than the threshold level, it can be estimated that SDTWA 
episode is present. A procedure for determining threshold level will be 
described below.

Presentation of Results
Simulation of signals with SDTWA using European ST-T 
database

To evaluate the proposed method, simulated ECG signals with 
SDTWA episode were generated because of lack of databases containing 
actual ECG signal with SDTWA. For generation of simulated ECG 
signal, European ST-T database [25] was adopted.

The European ST-T database was developed for evaluation of 
algorithms for analysis of ST and T-wave changes. It contains 79 
subjects, aged from 30 to 84. Each record is of two hours in duration. 
Each ECG signal was sampled at 250 samples per second with 12-bit 
resolution over a nominal 20 mV input range. 

To generate simulated ECG signals, nine healthy subjects’ data 
were selected by reference to annotation files. Selected nine data 
contain approximately 77000 beats in total. 

SDTWA episode was generated by adding pseudo TWA to selected 
subjects’ data. As shown in Figure 3, pseudo T-wave changes were 
simulated using a Hanning window that has been added to T-wave 
segments. In this study, T-wave changes in amplitude were set to 5, 15, 
30, 45, 60 and 75 μV, respectively. In each amplitude, 2700 simulated 
SDTWA episodes were added, whose duration ranged from 10 to 16 
beats. 

Determination of threshold level

As described previously, the presence/absence estimation is 
carried out with threshold of fractal dimension value. To do this, we 
firstly investigated histograms of fractal dimension calculated from 16 
beats T-wave time series to determine the threshold level. Figure 4a 
illustrates histogram of fractal dimension of T-wave time series without 
TWA episode (normal). It can be seen that a mean of fractal dimension 
is approximately 2.2. Figure 4b and Figure 4c show histograms of those 
with 5 and 75 μV SDTWA, respectively. As shown in these figures, the 
mean of fractal dimension tended to be proportional to the amplitude 

Figure 2: Pseudo source code for calculation Eqs. (4) and (5): variables such 
as k, m, I and N correspond to those of Eqs. (4) and (5). L[k] and Lk[k] mean 
left-hand sides in Eqs. (4) and (5), respectively.
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det
det

number of correctly ected episodeP
total number of ected episode

+ =                                        (7)

Results of evaluation

Table 1 gives an overall performance using fractal dimension 
based method as described above when applied to simulated ECG 
signals with different amplitudes of SDTWA (5, 15, 30, 45, 60 and 75 
μV). Figure 6 and Figure 7 show two examples of simulated ECG and 
corresponding results of TWA prediction. The evaluation is discussed 
in the next section. 

Discussion
Table 1 shows that in the cases where TWA has amplitudes 

from 30 to 75 μV, both S and P+achieve over 90%. For case of TWA 
amplitude of 75 μV, a 100% prediction is achieved. That means that 
the performance of fractal dimension based method is good enough 
when the TWA amplitude is sufficiently large. On the other hand, when 
the TWA amplitude becomes lower, the S and P+become lower, but 
keep 87% for TWA amplitude of 15 Vµ and 75% for TWA amplitude 
of 5 μV. This means that the fractal dimension based method remains 
effective even when the TWA amplitude is close to the noise level.

While the theoretical range of the fractal dimension D of a one-
dimensional time series is 21 << D , fractal dimensions computed for 
this research were larger than 2, which can be explained by the short 
lengths of time series. It has been reported [21] that calculations with 
large values of N bring the fractal dimension close to the theoretical 

Figure 3: Simulated ECG signal with short duration TWA. 

Figure 4: Histograms of the fractal dimension calculated from 16 beats T-wave 
amplitudes, (a), (b) and (c) show histograms calculated from data without TWA, 
and with 5 μV and 75 μV TWA episodes, respectively.

Figure 5: An example to show the correction of outlier beats using the robust 
statistics-like method. Left: original series of T-wave amplitudes. Right: the 
processed series.

SDTWA amplitude ( Vµ ) S (%) P+(%)

5 75 75

15 87 87

30 95 95

45 92 92

60 97 97

75 100 100

Table 1:  Result of Sdtwa Detection.

of SDTWA, implying that the mean of fractal dimension of T-wave 
time series without SDTWA might be smaller than those with SDTWA, 
and the lager the strength of SDTWA is, the larger the mean of fractal 
dimension is. Therefore, we determined the threshold level around 2.2 
for presence/absence estimation. As a result, an empirical threshold 
level was set to 2.3 through a trial and error process. 

Evaluation

 In this paper, sensitivity (S) and positive predictivity (P+) are used 
as indexes of performance for SDTWA detection, which are defined by 
equations (6) and (7) [17].

detnumber of correctly ected episodeS
total number of simulated episode

=                                           (6)
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one. However, as shown by Table 1, the proposed method was accurate 
enough to detect SDTWA, and therefore it suggests that the fractal 
dimension based method can be used as a nonlinear measure of 
SDTWA (N<16).

Conclusion
Use of LDTWA together with SDTWA is effectively to prediction 

of risk of cardiac death. So far, most existing TWA detection methods 

are developed for LDTWA. This study presented a new method for 
SDTWA analysis using the fractal dimension as an index. Evaluation 
with simulated ECG signals based on the European ST-T database 
showed that the Fractal dimension base method can predict SDTWA 
with sufficiently good accuracy (over 90% sensitivity and positive 
productivity) when the TWA magnitude is in an normal level (greater 
than 30 μV). It also remains effective when the TWA magnitude is close 
to noise level (e.g. 15 to 5 μV). This study suggested that the Fractal 
dimension based method is a promising method for SDTWA analysis.
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