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Introduction
Chemotherapy using anticancer drugs is a useful therapeutic 

method for cancer. Thus far, many effective anticancer drugs have 
been developed. However, due to the adverse effects of each drug, 
their application is limited. Thus, combination therapy using smaller 
amounts of multiple drugs has become more and more common.

The efficacy of anticancer drugs varies among patients. This 
may be explained by differences in gene expression. For example, 
overexpression of P-glycoprotein results in prominent resistance 
to many drugs such as vincristine, etoposide, and paclitaxel [1]. 
Comprehensive cDNA microarray analysis has been carried out for 
various cancers to examine alterations of gene expression [2-8].

In addition, a large diverse panel of cultured human tumor cell 
lines was tested for sensitivity to anticancer drugs [9]. Although this 
analysis was efficient to discriminate anticancer drug-responsive tumor 
cells, the genetic backgrounds of the cell lines were so variable that the 
precise action mechanism remained unclear. In the present study, we 

prepared NIH3T3 mouse fibroblasts transfected stably or transiently 
with varying tumor-related genes, and examined their chemosensitivity 
to anticancer drugs. Variations in action mechanisms may provide a 
rationale for combination chemotherapy.

Materials and Methods
Chemicals

Dulbecco’s modified Eagle’s minimum essential medium (DMEM), 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 
6-thioguanine (6-TG), cytarabine (AraC), hydroxyurea (HU) and were
purchased from Sigma (St. Louis, MO). Mitomycin C (MMC), metho-
trexate (MTX), 5-fluorouracil (5-FU) and mitoxantrone (MIT) were
purchased from Merck Biosciences (Darmstadt, Germany). Camp-
tothecin (CPT) was purchased form Biomol Research Laboratories
(Plymouth Meeting, PA). Paclitaxel (Taxol) was purchased from Alexis
Corporation (Lausen, Switzerland). Dimethyl sulfoxide (DMSO), et-
oposide (VP-16), cisplatin (CDDP) and peplomycin (PEP) were ob-
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Abstract
We prepared normal or Ha-ras-transformed NIH3T3 cells transfected stably or transiently with various tumor-

related genes. The chemosensitivity of the transfected clones to 16 anticancer drugs was compared to the parental 
control cells using the MTT assay. The chemosensitivity changes induced by transfected genes were calculated 
and expressed numerically as the Drug Chemosensitivity Index (DCI). High DCI values (indicating resistance) 
were frequently observed in cells expressing C/EBPα, C/EBPβ, p53, p21, PTEN, dominant-negative MDM2, 
caspases, HSP90, COUP-TF1 and decorin. In contrast, transfectants expressing ras, src, erbB2 and calpastatin 
had low DCI values, indicating increased sensitivity. Thus, it may be possible to predict the sensitivity of cancer 
cells toward anticancer drugs based on the expression levels of these genes. We then performed a regression 
analysis of DCI values between anticancer drugs. The correlation coefficients (r) were relatively high between 
cisplatin, camptothecin, mitomycin C and etoposide, suggesting that the mechanisms of action of these drugs are 
similar. The r values of aclarubicin, vincristine, taxol and cytarabine were low, suggesting that each of these drugs 
has a different and unique effect. This analysis may provide a rationale for design of combination chemotherapy 
regimens.
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tained from Wako Pure Chemicals (Kyoto, Japan). Vincristine (VCR) 
and ifosfamide (IFM) were obtained from Shionogi Pharmaceutica Co. 
Ltd. (Osaka, Japan); methyl 6-[3-(2-chloroethyl)-3-nitrosoureido]-6-
deoxy-α-D-glucopyranoside (MCNU) from Mitsubishi Welfarma Co. 
Ltd. (Osaka, Japan); and aclarubicin (ACR) from Astellas Pharma Inc. 
(Tokyo, Japan).

cDNA clones were purchased from Toyobo Biochemicals (Osaka, 
Japan), Guthrie Research Institute (Sayre, PA) or Open Biosystems 
(Huntsville, AL). Some clones were provided by isolators.

Cell lines and culture

NIH3T3 mouse fibroblasts and Ha-ras-transformed NIH3T3 cells 
(ras-NIH3T3) [10] were cultured in DMEM supplemented with 5% 
bovine serum and 100 µg/ml of kanamycin. Cells were transiently or 
stable transfected with cDNAs in eukaryotic expression vectors such 
as pcDNA3 and pME18S-FL3. To isolate stable transfectants, cells 
were transfected with the expression plasmids together with the neo 
gene using LipofectAMINE reagent (Life Technologies, Carlsbad, CA), 
and then selected by culture in the presence of G418 (400 µg/ml) for 
two weeks as described [11-13]. A total of 135 stable transfectants and 
41 transiently transfected cells were examined for chemosensitivity 
toward 16 anticancer drugs.

Western-blotting and RT-PCR analyses

The protein expression levels of transfected genes were examined 
by Western blotting [12,13]. The cells were washed with phosphate-
buffered saline (PBS) and lysed in 0.5% Nonidet P-40, 20 mM Tris-HCl 
(pH 7.5), 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 50 µM 
leupeptin, 50 µM antipain, 50 µM pepstatin A and 50 µM acetyl-Leucyl-
Leucyl-norleucinal for 10 min at 4˚C. The cell lysate was centrifuged at 
13,000×g for 10 min and the supernatant was used as cytoplasmic cell 
extract. The pellet was used as the nuclear fraction. The samples were 
analyzed by Western blotting using antibodies purchased from Santa 
Cruz Biotechnology (Santa Cruz, CA), followed by detection using 
ImmunoStar Reagents (Wako Pure Chemicals).

When the commercial antibodies are not available, the mRNA 
expression levels were examined by RT-PCT (reverse transcription-
polymerase chain reaction) as described previously [13,14]. Briefly, 
total cellular RNA was isolated from the tumor tissues using FastPure 
RNA Kit (Takara Biochemicals, Kyoto, Japan). Reverse transcription 
was carried out with oligo(dT)20 primer using the ThemoScript RT-PCR 
System (Invitrogen, Carlsbad, CA), according to the manufacturer’s 
instructions. The mRNA expression levels were examined via 
quantitative realtime RT-PCR using the Universal Probe Library 
system (Roche, Basel, Switzerland).

Evaluation of cytotoxicity of anticancer drugs

Chemosensitivity of transfected cells was examined using the 
MTT assay according to the method of Mosmann [15] as previously 
described [16,17]. Cells at exponentially growing phase were used. Five 
thousand cells per well (100 µl) were plated in 96-well plates in the 
presence of various concentrations of anticancer drugs, and cultured for 
three days. The activity of mitochondrial succinic dehydrogenase was 
measured by incubation for 4 h in the presence of 0.5 mg/ml of MTT 
(3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide). 
Absorbance reflects the viable cell number and was measured at 570 
nm with a reference wavelength of 650 nm using a microplate reader. 

Absorbance reflects the viable cell number and was expressed as a 
percentage of that of cells cultured in the absence of anticancer drugs.

For the combination treatment, ras-NIH3T3 were added with 5-FU 
(50 ng/ml), PEP (500 ng/ml) or MTX (50 ng/ml), and immediately 
after the addition, plated in the presence of varying concentrations of 
MIT, PEP or VP-16.

Data mining

The difference in the chemosensitivity between the parent and 
transfected cells was calculated and expressed numerically as the 
Drug Chemosensitivity Index (DCI) [17-19] as follows: DCI = log 
(IC40,transfectant/IC40,parent) (Figure 1).

Results and Discussion
Chemosensitivity to anticancer drugs of transfected cells

Mouse fibroblasts, NIH3T3 or ras-NIH3T3, were transfected with 
various cancer-related genes, and the chemosensitivity to 16 different 
anticancer drugs was examined by MTT assay. Table 1 summarizes 
the list of genes of which the transfection induced resistance or 
sensitization against each anticancer drugs. The DCI values reflect the 
extent how resistant of the transfected cells were converted by the gene 
transfection [17-19]. The full version of list of DCI values are shown in 
Supplementary Table S1. High DCI values (indicating drug resistance) 
were frequently observed in cells expressing C/EBPα, C/EBPβ, wild-
type p53, p21, PTEN, mutated MDM2, caspases, HSP90, COUP-TFI 
and decorin. In contrast, transfectants expressing ras, src, erbB2, 
calpastatin, mutated p53 and wild-type MDM2 had low DCI values, 
indicating increased sensitivity. Thus, it may be possible to predict 
the sensitivity of cancer cells toward anticancer drugs based on the 
expression levels of these genes. It should be noted that oncogenes such 
as ras, src, erbB2 and MDM2 increased the chemosensitivity against 
some, if not all, anticancer drugs whereas tumor suppressor genes such 
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Figure 1: Representative results of the MTT assay. The relative cell viability 
was measured using the MTT assay. The concentration of drug is shown on 
the abcissa and the absorbance of the formazan, which represents the relative 
cell viability, is shown on the ordinate. Sensitivity curves of two transfectants, 
in addition to the parental ras-NIH3T3 cells, are shown. The positions of drug 
concentrations giving 40% inhibition in two transfectants (IC40,transfectant-1 and 
IC40,transfectant-2) and in the parental cells (IC40,parent) are shown. A dotted line indicates 
60% (40% inhibition) of cell viability. Broken lines showed by arrows indicate 
the concentrations of IC40,transfectant-1, IC40,transfectant-2 and IC40,parent. DCI values were 
calculated and expressed numerically as follows: DCI = log (IC40,transfectant/IC40,parent)
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CDDP 5-FU MTX CPT

Transfected  genes Transfected  genes Transfected  genes Transfected  genes
Resistant Sensitive Resistant Sensitive Resistant Sensitive Resistant Sensitive
C/EBPa N-ras DAN Ha-ras C/EBPa v-Src DAN Ha-ras
C/EBPb Ha-ras C/EBPa TERT-WT DAN E2F HSP90 N-ras
C/EBPb PTEN-A3 Bax* v-Src Caspase-3 APP RhoA-DN Akt-DN
HSP90 HDAC1 Hsdj IkB-TDN PTEN-G129R Akt-DN C/EBPb ErbB2
Hsdj DJ1-WT Cystatina Axin p53-WT Calpain 30K C/EBPa Calpastatin
v-Src PARK7 DnaJ Rac1 DnaJ cAMP-PK-CS Caspase-2 v-Src
COUP PTEN-G129R CyclinD1 PKCg-WT PKCa-KN ColXVIII MKRN1-mut Ki-ras
p21 Caspase-1 Caspase-3 Ki-ras Ras-N17 C/EBPa CBP TERT-WT
RhoA-DN APC N-ras STAT5A P/CAF WIG1 PDGF-RD HDAC1
FANCC CSK c-Myc R-Ras Decorin VDAC1 p16 FilaminA

VP-16 MIT MMC IFM

Transfected  genes Transfected  genes Transfected  genes Transfected  genes
Resistant Sensitive Resistant Sensitive Resistant Sensitive Resistant Sensitive
DAN DAP p53-WT MDM2-WT DAN N-ras C/EBPa Ras-N17
C/EBPb APC C/EBPb N-ras MKRN1-mut v-Src TERT-DN Akt-DN
PTEN-WT PARK7 CAPN10 TKT C/EBPa Ha-ras Hsp70 N-ras
PKCa-KN Ha-ras Bad PARK7 C/EBPb ErbB2 p53-mut Ki-ras
AISEC HIF1 PER3 HDAC1 C/EBPb Akt-DN HNF4 Ha-ras
IkB-TDN STAT4 c-Myc Ha-ras Caspase-2 p53 DnaJ Cystatin E
Bcl-2 STAT6 TERT-DN APC TERT-DN Ki-ras p16 Caspase-1
COUP OPRT Bcl-2 Cyclin D1 Caspase-3 TERT-WT C/EBPb v-Src
MDM2-mut HO COUP MSSP HSP90 Calpastatin MKRN1-mut WIG1
c-Myc DJ1-K130R KRas2-DN APC P/CAF Hsp70 C/EBPb p53

PEP ACR VCR Taxol

Transfected  genes Transfected  genes Transfected  genes Transfected  genes
Resistant Sensitive Resistant Sensitive Resistant Sensitive Resistant Sensitive
MKRN1-mut Ki-ras DAN WIG1 DAN OPRT APC Calpain 30K
p53-WT v-Src Caspase-2 PER2 p53-WT APC C/EBPb Axin
ARF1 Cystatina p16 ColXVIII Decorin Rap1A Caspase-2 TSC1
HSP90 ErbB2 Bax Caspase-1 DLG FGFR-KR Decorin STAT2
Akt-DN N-ras Caspase-3 Ha-ras p21 Rac1 MDM2-WT p53-mut
PER3 PARK7 TERT-DN TK-1 C/EBPb APC DLG FilaminA
DAN FGFR-WT Bax RCC1 p16 b-Catenin Ki-ras Akt-DN
BH HDAC1 MM1 Ki-ras PER3 CRI1 Max STAT3
MDM2-WT Calpastatin TS Cystatina PER-1 RAN PTEN-WT HNF4
Caspase-2 PIGPC1 Max ErbB2 Regucalcin c-Myc RhoA-DN Enigma

MCNU 6-TG AraC HU

Transfected  genes Transfected  genes Transfected  genes Transfected  genes
Resistant Sensitive Resistant Sensitive Resistant Sensitive Resistant Sensitive
C/EBPb Regucalcin Caspase-3 APP C/EBPb AMY1 DAN N-ras
Rab1A RAN C/EBPa PER2 MKRN1-mut Gluco-R Bcl-2 p21
RhoGDIa Akt-DN DAN ColXVIII OPRT Ki-ras m-Calpain ErbB2
ARF1 WIG1 CaMKIIa-CA CathL-mut Bcl-2 Ha-ras Caspase-3 HNF4
AISEC STMN Cystatina GUK1 AISEC Caspase-3 TERT-WT v-Src
MDM2-mut STAT6 HSP90 Calpastatin MDM2-WT FGFR-KR TSC1 Ki-ras
14-3-3z E2F C/EBPb RPA2 Decorin p53-mut PTEN-WT MDM2-WT
IKK-DN Caspase-3 PDGF-RD N-ras Bcl-XL RAN Abl STAT4
PKCa-KN C/EBPa HSP40 Ha-ras PKCa-KN Bax HSP90 PER-1
cAMP-PK-CS HSP40 HNF1 SDC1 Enigma HSP90 R-Ras CaMKIIa

Listed are top 10 of genes of which the transfection induced drug resistance or sensitization.
The full version of DCI values are shown in Supplementary Table S1.
Abbreviations: WT, wild-type; mut, mutated;  DN, dominant negative;  KN, kinase negative; TDN, transdominant negative; CA, constitutively active; CS, catalytic subunit.

Table 1: List of anticancer drug-sensitivity-related genes.
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as p53, p21 and PTEN reduced the sensitivity. This may justify the 
application of anticancer drugs for cancer therapy.

Regression analysis of DCI values

Because chemosensitivity was similar but not identical among 
anticancer drugs, we then performed a regression analysis of the 
DCI values shown in Table 1. The correlation coefficients (r) are 
summarized in Table 2. The r values were relatively high (significantly 
correlated) among CDDP, CPT, MMC and VP-16, suggesting that the 
mechanisms of action of these drugs are similar (Table 2, Figure 2). The 
r value between MMC and CPT was the highest. The r values of ACR, 
VCR, taxol and AraC were relatively low (no correlation), suggesting 
that each of these drugs has a different and unique effect.

Combination chemotherapy is growing more common in cancer 
chemotherapy. For example, the combination of cyclophosphamide 
(IFM analogue), VCR and doxorubicin (ACR analogue) is effective for 
small cell lung cancer [20] and non-Hodgkin lymphoma [21]. The low 
r value among these drugs means that they works independently. Thus, 
additive effects can be expected. This was exemplified by the result that 
the high-r-value combination of MIT and PEP caused less cytotoxic 
effects than the low r value combination of MIT and 5-FU or MTX 
(Figure 3A).

On the other hand, colon cancer and ovarian clear cell 
adenocarcinoma are treated with a combination of CPT and MMC 
[22,23], which showed a high r value (Table 2). Both CPT and MMC 
are effective toward ras- and erbB2-transfected cells (Table 1). Colon 

cancers are frequently accompanied by mutations in the Ki-ras gene 
[24,25]. Overexpression of erbB2 in ovarian carcinoma [26,27] may 
account for the sensitivity against CPT and MMC. Thus, if the target 
molecules are restricted, synergistic effects focused on the target can 
be expected. Furthermore, such high-r-value combinations may 
reduce the side effects caused by a high-dose application of a single 
drug. Likewise, the high r value combinations of PEP and MTX or 
VP-16 and MTX showed more suppressive effects than the low r value 
combinations of PEP and 5-FU or VP-16 and PEP (Figure 3B and C).
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TaxolMCNU

MTX
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6 G

CPT
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MMC
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Figure 2: Functional similarity between anticancer drugs. Combinations of two 
drugs with high r values are shown schematically. High r values suggest similar 
action mechanisms between drugs. Results in red indicate a closer relationship 
than results in black.

Shown are correlation coefficients between two each of anticancer drugs.
Coefficients higher than 0.5 or lower than 0.2 are marked.

Table 2: Correlation of DCI values between anticancer drugs.

CDDP 5-FU MTX CPT VP-16 MIT MMC IFM PEP ACR VCR Taxol MCNU 6-TG AraC HU

CDDP 0.277 0.280 0.569 0.498 0.485 0.496 0.412 0.357 0.237 0.225 0.242 0.311 0.402 0.320 0.202

5-FU 0.278 0.510 0.438 0.393 0.094 0.466 0.329 0.235 0.404 0.241 0.134 0.109 0.382 0.115 0.306

MTX 0.281 0.510 0.484 0.426 0.275 0.515 0.355 0.407 0.350 0.358 0.180 0.173 0.523 0.229 0.356

CPT 0.568 0.438 0.484 0.509 0.473 0.767 0.501 0.496 0.417 0.344 0.258 0.297 0.588 0.257 0.539

VP-16 0.498 0.393 0.426 0.509 0.499 0.547 0.292 0.354 0.331 0.571 0.281 0.463 0.330 0.454 0.402

MIT 0.484 0.094 0.275 0.473 0.499 0.468 0.236 0.405 0.096 0.360 0.168 0.232 0.300 0.313 0.352

MMC 0.496 0.466 0.515 0.767 0.547 0.468 0.477 0.488 0.442 0.336 0.167 0.419 0.550 0.340 0.556

IFM 0.411 0.329 0.355 0.501 0.292 0.236 0.477 0.317 0.190 0.056 0.072 0.458 0.360 0.234 0.330

PEP 0.356 0.235 0.407 0.496 0.354 0.405 0.488 0.317 0.346 0.208 0.152 0.280 0.342 0.368 0.332

ACR 0.232 0.404 0.350 0.417 0.331 0.096 0.442 0.190 0.346 0.200 0.050 0.061 0.286 0.035 0.277

VCR 0.225 0.241 0.358 0.344 0.571 0.360 0.336 0.056 0.208 0.200 0.220 0.120 0.213 0.375 0.185

Taxol 0.242 0.134 0.180 0.258 0.281 0.168 0.167 0.072 0.152 0.050 0.220 0.402 0.219 0.057 0.151

MCNU 0.312 0.109 0.173 0.297 0.463 0.232 0.419 0.458 0.280 0.061 0.120 0.402 0.135 0.425 0.234

6-TG 0.402 0.382 0.523 0.588 0.330 0.300 0.550 0.360 0.342 0.286 0.213 0.219 0.135 0.168 0.394

AraC 0.320 0.115 0.229 0.257 0.454 0.313 0.340 0.234 0.368 0.035 0.375 0.057 0.425 0.168 0.257

HU 0.202 0.306 0.356 0.539 0.402 0.352 0.556 0.330 0.332 0.277 0.185 0.151 0.234 0.394 0.257
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Figure 3: Results of combination treatment. ras-NIH3T3 cells were added with 5-FU (50 ng/ml), PEP (500 ng/ml) or MTX (50 ng/ml). Immediately after the addition, 
cells were plated in the presence of varying concentrations of MIT (A), PEP (B) and VP-16 (C). After culture for three days, the viabilities were measured by the MTT 
assay. The abscissa and ordinate represent the concentration of the latter drugs and the relative viability versus that in the absence of the latter drugs, respectively.

Consequently, this approach using regression analysis of DCI 
values of anticancer drugs may provide a theoretical basis for design of 
combination chemotherapy regimens.
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