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Introduction
Consider an r2 square contingency table with the same row and 

column classifications. Let pij denote the probability that an observation 
will fall in the (i,j) th cell of the table (i=1,…,r;j=1,…,r). For the analysis 
of square contingency tables, one of our interests is whether or not there 
is a structure of symmetry (or asymmetry) rather than independence in 
the table. The symmetry (S2 ) model is defined by 

Pij=ψij,

where ψij=ψji. This indicates that the probability that an observation will 
fall in the (i,j)th cell is equal to the probability that the observation falls 
in the (j,i)th cell. As a model that has the weaker restrictions than the 
S2 model, Caussinus [1] considered the quasi-symmetry ( 2

1Q ) model 
defined by 

Pij = µαiβjψij

where ψij=ψji. A special case of this model with {αi = βi} is the S2 model. 
Also Caussinus [1] showed a theorem that the S2 model holds if and 
only if both the 2

1Q  and the marginal homogeneity models hold. For 
the analysis of data, the theorem (say decomposition of the S2 model) 
may be useful for seeing the reason for the poor fit when the S2 model 
fits the data poorly.

The S2 and 2
1Q  models indicate the structure of symmetry of cell 

probabilities and odds-ratios, respectively. As a model that indicates 
the structure of asymmetry of cell probabilities, Agresti [2] considered 
the linear diagonals-parameter symmetry (LS2) model defined by

Pij = µαiβjψij,

where ψij=ψji. This model is a special case of 2
1Q  model. In this way 

various symmetry and asymmetry models have been proposed by 
many statisticians (also see Agresti [3]; Tomizawa and Tahata [4]). 

 Consider an rT contingency table with ordered categories. Let 
i=(i1,…,iT) for ik=1,…,r (k =1,…,T), and let Pi denote the probability 
that an observation will fall in the ith cell of the table. Let Xk(k =1,…,T), 
denote the kth variable. Tahata et al. [5] considered the linear diagonals-
parameter symmetry (LST ), and extended LST (ELST) models. The ELST 
model is defined by 
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where ψi=ψj for any permutation j=(j1,…,jT) of i=(i1,…,iT). A special 
case of this model with { }2( ) 1α =s  is the LST model. Also a special

case of this model with { }1( ) 2( ) 1α α= =s s  is the symmetry (ST) model 

(Bhapkar and Darroch [6]; Agresti [3]). Note that when T = 2, the LS2 
model is given by Agresti [2]. 

Tahata et al. [7] considered the hth linear ordinal quasi-symmetry (
T
hLQ ) model (for fixed h (h =1,…,T-1)), defined by 
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where ψi=ψj for any permutation j=(j1,…,jT) of i=(i1,…,iT). Note that the 
T
hLQ  model is a special case of the hth order quasi-symmetry ( T

hQ ) model 

(Bhapkar and Darroch [6]), and LST (ELST) models are special cases of 
the first order quasi-symmetry ( 1

TQ ) model. Note that the T
hQ  model is 

defined by T
hLQ  with { }1

1

k kl

l

i i
k kβ 



replaced by { }1 1( )l k klk k i iγ , , 

,l = 1,…,h . 

For the analysis of data, when the ST model does not hold, one 
may be interested in applying various asymmetry models; for example, 

the LST, ELST and T
hLQ  models. If these models do not hold, we are 

interested in applying a more generalized asymmetry model. In 
addition we are interested in seeing the reason for the poor fit of the 
ST model by using the decomposition of the ST model. Thus the present 
paper proposes the generalization of the ELST model, and gives the 
orthogonal decomposition of the ST model.

Generalized linear asymmetry model

Consider a new model defined by, for a fixed k (k=1,..,r-1), 
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where ψi=ψj for any permutation j=(j1,…,jT) of i=(i1,…,iT). Without loss 
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of generality, we may set (1) 1lα =  (l = 1,…,k). We shall refer to this 

model as the kth linear asymmetry model (denoted by T
kLS ). A special 

case of the T
kLS  model with { }1( ) ( ) 1s k sα α= = = , s =1,..,T, is the ST 

model. Special cases of the T
kLS  model with k=1 and with k=2 are LST 

(i.e., 1
TLQ ) and ELST models, respectively. 

The 1
TQ  model can be expressed as

1 1
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where ψi= ψj for any permutation j=(j1,…,jT) of i=(i1,…,iT). This model 
can also be expressed as 
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where φi= φj for any permutation i=(i1,…,iT) of i=(i1,…,iT) with 

( ) ( ) 1( )l l ll i l i iλ γ γ= /  and 
11( ) 1( )…

Ti i i iϕ γ γ ψ= . Then the 1
TQ  model with 
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1
TQ  model is equivalent to the 1

T
rLS −  model. Therefore we point out 

that the T
kLS  ( 1k r< − ) model is a special case of the 1

TQ  model. 

Consider the case of T=2. For a fixed k (<r), the 2
kLS  model can be 

expressed as 

1(1) 1(2) (1) (2)

k ki j i j
ij k k ijp µα α α α ψ= × × ,

where ψij=ψji. Under this model, the ratio of Pij to Pji is 
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where (2) (1)( )l l lγ α α= / . Namely, this model indicates that the log ratio 

of symmetric cells is expressed as the polynomial. Note that the 2
1rLS −  

model is equivalent to the 2
1Q  model.

Decomposition of symmetry model

For a fixed k (k=1,..,r-1), consider a model defined by 

1( ) ( ) ( 1 … )l l
TE X E X l k= = = , , .

We shall refer to this model as the marginal kth moment equality 

( T
kMME ) model. Then we obtain the following theorem.

Theorem 1: For the rT table ( 2)T ≥  and k fixed ( 1 … 1)k r= , , − , the 

ST model holds if and only if both the T
kLS  and T

kMME  models hold.

We give the proof in the Appendix 1. Note that special cases of 
Theorem 1 with k=1 and k=2 are given by Tahata et al. [5].

Also although the detail is omitted, we can see that the 1
T
rMME −  

model is equivalent to the marginal homogeneity ( 1
TM ) model defined 

by

1( ) ( ) ( 1 … )TP X i P X i i r= = = = = , , ,

and the 1
T
rLS −  model is equivalent to the 1

TQ  model. Namely, a special 
case of Theorem 1 with k=r-1 is identical to the result given by Bhapkar 
and Darroch [6].

By the way, the 1
TMME  model is expressed as

1( ) ( )TE X E X= = .

Also the 2
TMME  model is equivalent to

1( ) ( )TE X E X= = ,

and

1( ) ( )TV X V X= = .

We are also interested in, for T ≥3, 

1( ) ( )TE X E X= = ,

and

( ) (1 )i jCov X X C i j T, = ≤ < ≤ ,

where C is unknown constant. We shall refer to this model as the 
covariance equality (CET) model. Then, in a similar manner to Theorem 
1 and Tahata et al. [7], we can obtain the following theorem.

Theorem 2: For the rT table (T ≥3), the ST model holds if and only if 

both the 2
TLQ  and CET models hold.

The relationships among models are given in (Figure 1).

Orthogonal decomposition of test statistic

Let 
1 Ti in


 denote the observed frequency in the (i1,…,iT)th cell of the 

rT (T≥ 2) table ( 1 … 1 … )ki r k T= , , ; = , ,  with 
1 Ti in n=∑ ∑


 , and 

let 
1 Ti im


 denote the corresponding expected frequency. Assume that 

{ }1 Ti in


 have a multinomial distribution. The maximum likelihood 

estimates of expected frequencies { }1 Ti im


 under the T
kLS , T

kMME  

and CET models could be obtained using the iterative procedure, 
for example, the general iterative procedure for log-linear models of 
Darroch and Ratcliff [8] or using the Newton-Raphson method to the 
log-likelihood equations. 

Figure 1: Relationships among models (“A→ B” indicates that model A implies 
model B). 

where φi= φj for any permutation j=(j1,…,jT) of i=(i1,…,iT) with 
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Each model can be tested for goodness-of-fit by, e.g., the likelihood 
ratio chi-squared statistic with the corresponding degrees of freedom 

(df). The numbers of df for the ST, T
kLS  and T

kMME  models are Tr L− , 

( 1)Tr L T k− − −  and ( 1)T k− , respectively, where 

1 ( 1)
( 1)

r T r TL
T T r

+ −  + − !
= = .  ! − ! 

Also the number of df for the 2
TLQ  and CET models are Tr L N− −  

and N, respectively, where ( 2) ( 1) 2N T T T= − + − / . 

Let G2(M) denote the likelihood ratio statistic for testing goodness-
of-fit of model M. Thus 
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where 
1ˆ Ti im


 is the maximum likelihood estimate of expected frequency 
1 Ti im


 under model M. Then we obtain the following theorem.

Theorem 3: For the rT table (T≥ 2) and k fixed ( 1 … 1)k r= , , − , the 

test statistic G2(ST) is asymptotically equivalent to the sum of 2 ( )T
kG LS  

and 2 ( )T
kG MME .

The proof of Theorem 3 is given in the Appendix 2. In a similar 
manner to Tahata et al. [5,7], we can obtain the following theorem.

Theorem 4: For the rT table (T≥ 3), the test statistic G2(ST) is 
asymptotically equivalent to the sum of 2

2( )TG LQ  and 2 ( )TG CE .

Note that special cases of Theorem 3 with k =1 and k =2 are given 
by Tahata et al. [5]. 

Analysis of data

Analysis of table 1: The data in (Table 1), taken from Stuart [9], are 
constructed from unaided distance vision of 7477 women aged 30-39 
employed in Royal Ordnance factories in Britain from 1943 to 1946 

(see, e.g., Caussinus [1]; Tomizawa and Tahata [4]). 

The S2 model fits the data in (Table 1) poorly (see Table 3). By using 
the decompositions for the S2 model, we shall consider the reason why 

the S2 model fits these data poorly. The 2
kLS  (k=1,2,3) models fit them 

well, but the 2
kMME  (k =1,2,3) models fit them poorly. So, for example, 

we see from Theorem 1 with k =1 (i.e., decomposition of the S2 model 

into the 2
1LS  and 2

1MME  models) that the poor fit of the S2 model is 

caused by the influence of the lack of structure of the 2
1MME  model 

(rather than the 2
1LS  model). From Theorem 1 with k =2 or k =3, we 

can obtain similar results. 

The 2
3LS  model may be expressed as 

2 2 3 3

1(2) 2(2) 3(2) (1 4)ij j i j i j i

ji

p
i j

p
α α α− − −= ≤ < ≤ .

Therefore, under this model the probability that a woman’s 
right eye grade is i and her left eye grade is j(>i) is estimated to be 

2 2 3 3

1(2) 2(2) 3(2)ˆ ˆ ˆj i j i j iα α α− − −  times higher than the probability that the woman’s 

left eye grade is i and her right eye grade is j, where 1(2) 1 077α̂ = . , 

2(2) 1 017α̂ = . , and 3(2) 0 998α̂ = . . Note that (2)ˆ lα  ( 1 2 3)l = , ,  are the 

maximum likelihood estimates of (2)lα . In this similar manner, the 

interpretations under the 2
2LS  and 2

1LS  models are obtained although 
the details are omitted. 

According to the test based on the difference between the G2 values 
for the 2

2LS  and 2
3LS  models, the 2

2LS  model may be preferable to 

the 2
3LS  model, and in the similar manner, the 2

1LS  model may be 

preferable to the 2
2LS  model.

Analysis of table 2: Consider the data in (Table 2) taken from 
Tahata et al. [5]. These are the results of the treatment group only in 
randomized clinical trials conducted by a pharmaceutical company 
in anemic patients with cancer receiving chemotherapy. The response 
is the patient’s hemoglobin (Hb) concentration at baseline (before 
treatment) and following 4 weeks and 8 weeks of treatment. (Table 2) 
shows the 3×3×3 array of counts of Hb response that is classified as 
(1) ≥10 g/dl, (2) 8-10 g/dl, and (3) < 8 g/dl. It is reasonable to explore 
this array for various asymmetries involving time. Namely, we are 
interested in considering the transition of patient’s Hb concentration 
rather than the interchangeability of evenly spaced points in time with 
respect to those concentrations. For example, we want to see whether 
there is an asymmetric transition of those concentrations or not, when 
the value of those concentration at baseline was given. 

We see from (Table 3) that (1) each of the S3, 3
kLS  ( 1 2)k = ,

, 3
kMME  (k=1,2,) , and CE3 models fits the data in (Table 2) poorly, 

however, (2) the 3
2LQ  model fits them well. 

The S3 model fits the data in (Table 2) poorly (see Table 3). By using 
the decompositions for the S3 model, we shall consider the reason why 
the S3 model fits these data poorly. The 3

2LQ  model fits them well, 
but the other models fit them poorly. So, we see from Theorem 2 (i.e., 

decomposition of the S3 model into the 3
2LQ  and CE3 models) that 

the poor fit of the S3 model is caused by the influence of the lack of 

Right eye Left eye grade

grade Best (1) Second (2) Third (3) Worst (4) Total
Best (1) 1520 266 124 66 1976

(1520.00) (263.37) (133.35) (59.12)
(1520.00) (263.77) (133.53) (59.10)
(1520.00) (263.38) (133.58) (59.04)

Second (2) 234 1512 432 78 2256
(236.63) (1512.00) (418.23) (88.53)
(236.23) (1512.00) (418.19) (88.38)
(236.62) (1512.00) (418.99) (88.39)

Third (3) 117 362 1772 205 2456
(107.65) (375.77) (1772.00) (202.27)
(107.47) (375.81) (1772.00) (201.92)
(107.42) (375.01) (1772.00) (201.57)

Worst (4) 36 82 179 492 789
(42.88) (71.47) (181.73) (492.00)
(42.90) (71.62) (182.08) (492.00)
(42.96) (71.61) (182.43) (492.00)

Total 1907 2222 2507 841 7477

Table 1: Unaided distance vision of 7477 women aged 30-39 employed in 
Royal Ordnance factories in British from 1943 to 1946; from Stuart [9]. (Upper, 
middle and lower parenthesized values are the maximum likelihood estimates 
of expected frequencies under the 2

1LS , 2
2LS  and 2

3LS  models, respectively).
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structure of the CE3 model (rather than the 3
2LQ  model). 

We shall consider the hypothesis that the 3
1LS  model holds 

assuming that the 3
2LQ  model holds. Then we can use the test based on 

the difference between the likelihood ratio chi-squared statistics since 

the 3
1LS  model is a special case of the 3

2LQ  model. This hypothesis is 

rejected at the 0.05 significance level since the difference between the 

two likelihood ratio chi-squared values is 25.366 with 2 df. Therefore 

the 3
2LQ  model would be preferable to the 3

1LS  model for these data. 

Under the 3
2LQ  model, for example, we see 

( 1 2 3 1 3)ijk k j
i

ikj

p
i j k

p
θ −= = , , ; ≤ < ≤ ,

8 weeks

Baseline 4 
weeks (1) (2) (3)

(1) (1) 77 7 1
(77.00) (8.53) (0.22)

(2) (1) 43 7 0
(39.80) (9.35) (0.13)

(3) (1) 3 0 0
(4.72) (0.60) (0.02)

(1) (2) 3 8 1
(4.67) (7.69) (0.74)

(2) (2) 17 16 5
(14.96) (16.00) (3.30)

(3) (2) 3 8 1
(2.80) (6.42) (0.70)

(1) (3) 1 1 1
(0.07) (0.41) (0.59)

(2) (3) 0 2 3
(0.33) (5.28) (4.03)

(3) (3) 0 4 3
(0.39) (3.27) (3.00)

The response categories are (1) ≥10 g/dl, (2) 8 −  10 g/dl, (3) <  8 g/dl. 
Table 2: Hemoglobin concentration at baseline, 4 weeks and 8 weeks in 
carcinomatous anemia patients from a randomized clinical trial; from Tahata et 
al. [5]. (Parenthesized values are the maximum likelihood estimates of expected 
frequencies under the 3

2LQ  model).

For Table 1 For Table 2

Models df G2 Models df G2

S2 6 19.249* S3 17 76.186* 

2
1LS  5 7.280  

3
1LS 15 41.550* 

2
2LS  4 7.277 3

2LS  13 35.466* 

2
3LS 3 7.271 3

2LQ  13 16.184 

2
1MME  1 11.978* 3

1MME  2 23.754* 

2
2MME  2 11.982* 3

2MME  4 29.250* 

2
3MME  3 11.987* 3CE  4 51.521* 

The symbol “*” means significant at 5% level.
Table 3: Likelihood ratio chi-square values G2 for models applied to the data in 
(Tables 1 and 2).

where 3 2 13 12( )( )i
iθ β β β β= / / . Therefore, under the 3

2LQ  model, 

the maximum likelihood estimates of {θi} are 1ˆ 1 82θ = . , 2ˆ 0 63θ = .  

and 3ˆ 0 21θ = . , respectively. Therefore, under the 3
2LQ  model, (i) 

the conditional probability that the state of the Hb concentration 
is j at 4 weeks and that is k (>j) at 8 weeks, is estimated to be 1.82k-j 
times higher than the conditional probability that the state of the Hb 
concentration is k at 4 weeks and that is j at 8 weeks on condition 
that the patient’s Hb concentration is (1) ≥10g/dl at baseline, (ii) 
those conditional probability is estimated to be 0.63k-j times higher 
than the corresponding conditional probability on condition that the 
patient’s Hb concentration is (2) 8–10 g/dl at baseline, and (iii) those 
conditional probability is estimated to be 0.21k-j times higher than the 
corresponding conditional probability on condition that the patient’s 
Hb concentration is (3) <8 g/dl at baseline. Therefore we could infer 
that (i) when a patient’s Hb concentration is (1) ≥10 g/dl at baseline, 
those concentration tend to decrease from 4 weeks to 8 weeks since 
the maximum likelihood estimates of θ1 is greater than 1, (ii) when a 
patient’s Hb concentration is (2) 8–10 or (3) <8 g/dl at baseline, those 
concentration tend to increase from 4 weeks to 8 weeks since the 
maximum likelihood estimates of θ2 and θ3 are less than 1.

Concluding Remarks

In this paper, we have proposed the k-order generalization of the 
linear diagonals-parameter symmetry model that is including the 
first order quasi-symmetry model, and have given the decomposition 
of the symmetry model. When the ST model fits the data poorly, the 
decomposition of the ST model (i.e., Theorems 1 and 2) would be useful 
for seeing the reason for its poor fit. As seen in analysis of (Tables 1, 2), 
we can see that (1) for the data in (Table 1), the poor fit of the S2 model 

is caused by the poor fit of the 2
kMME  models rather than the 2

kLS  

(k=1,2,3) models, and (2) for the data in (Table 2), the poor fit of the S3 

model is caused by the CE3 model rather than the 3
2LQ  model. 

In Section 3 we have shown a theorem that the ST model holds 

if and only if both the T
kLS  and T

kMME  models hold for a fixed k 

( 1 … 1)k r= , , − . Also, we gave the asymptotic equivalence of test 
statistic for the ST model in Theorem 3. Thus, for the orthogonal 

decomposition of the ST model into the T
kLS  and T

kMME  models, 

an incompatible situation, that both the T
kLS  and T

kMME  models are 
accepted with high probability but the ST model is rejected with high 
probability, would not arise. For the orthogonal decomposition of the 

ST model into the 2
TLQ  and TCE  models, we can also obtain similar 

results. (For the details of orthogonal decomposition, see Darroch and 
Silvey [10]).
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Appendix 1
We shall show the proof of Theorem 1 when T=2. For a fixed k, if 

the S2 model holds, then the 2
kLS  and 2

kMME  models hold. Assuming 
that both the 2

kLS  and 2
kMME  models hold, then we shall show the S2 

model holds. Let { }∗ijp  denote the cell probabilities which satisfy both 
the 2

kLS  and 2
kMME  models. Since the 2

kLS  model holds, we see 

(1) (2)
1

log log log log logµ α α ψ∗  
 
 

=

= + + + ,∑
k

l l
ij l l ij

l
p i j   

where  ψ ψ=ij ji . Let π ψ= /ij ij c  with ψ=∑∑ ijc . Then the 2
kLS  and 2

kMME

models are expressed as 

(1) (2)
1

log log log logµ α α
π

∗
 
 
 

=

 
= + + ,  

 
∑

k
ij l l

l l
lij

p
c i j  and

1 2 ( 1 … )µ µ∗ ∗= = , , ,l l l k
where 1 1 1

µ ∗ ∗
= =

=∑ ∑r rl l
sts t

s p and 2 1 1
µ ∗ ∗

= =
=∑ ∑r rl l

tss t
s p . Then we denote   

1 2( )µ µ∗ ∗=l l  by 0µ
l . 

Consider the arbitrary cell probabilities { }ijp  satisfying 

1 2 0 ( 1 … )µ µ µ= = = , , ,l l l l k

where 1µ
l   ( 2µ

l ) denote 1µ
∗l ( 2µ

∗l ) with { }∗ijp  replaced by { }ijp . Let
{ } { }( );ij ijK a b  be the Kullback-Leibler information between { }ija  and 

{ }ijb  , where 

{ } { }( )
1 1

log
= =

 
; = .  

 
∑∑

r r
ij

ij ij ij
i j ij

a
K a b a

b
 

From above equations, we see  
1 1

( ) log 0
π

∗
∗

= =

 
− = .  

 
∑∑

r r
ij

ij ij
i j ij

p
p p

Thus we can obtain { } { }( ) { } { }( ) { } { }( ); ; ;π π∗ ∗= +ij ij ij ij ij ijK p K p K p p . Since   
{ }π ij is fixed, we see { } { } { }( ) { } { }( )min ; ;π π∗=

ij
ij ij ij ijp

K p K p , and then   

{ }∗ijp uniquely minimize { } { }( ); πij ijK p . 

Let 
∗∗ ∗=ij jip p  for 1≤ , ≤i j r . Then noting that { }π π=ij ji , we obtain 

{ } { } { }( ) { } { }( )min ; ;π π∗∗=
ij

ij ij ij ijp
K p K p , and then { }∗∗

ijp  uniquely minimize 

{ } { }( ); πij ijK p . Therefore, we see ∗ ∗=ij jip p for 1≤ , ≤i j r . Namely, the S2 model 

holds. The proof is completed in case of T=2 . For the case of  T > 2, we 
can obtain by the same way.

Appendix 2
We shall show the proof of Theorem 3 when T=2. For a fixed k, the    

2
kLS  model may be expressed as

1
log ( ) (1 )β φ

=

= − + ≤ , ≤ ,∑
k

l l
ij l ij

l
p j i i j r

where φ φ=ij ji . Let 

 11 1 21 2 1

1

( … … … … )

( … )β β β φ

= , , , , , , , , , ,

= , , , ,

t
r r r rr

t
k

p p p p p p p

where “t” denotes the transpose and

11 12 1 22 23 2( … … … )φ φ φ φ φ φ φ φ= , , , , , , , , , ,r r rr  

is the 1 ( 1) 2× + /r r  vector of φij  for 1≤ ≤ ≤i j r . Then the 2
kLS    model 

is expressed as 

1 1log ( … )β β+= = , , , ,k kp X X X X

where X is the 2 ×r K  matrix with ( 1) 2= + / +K r r k  and 
21 1 the 1 vector ( 1 … )= ⊗ − ⊗ ; × = , , ,l l

l r r r rX J J r l k  
and 1+kX  is the 2 ( 1) 2× + /r r r  matrix of 1 or 0 elements, determined 
from the above equation, 1s is the 1×s  vector of 1 elements and 

(1 2 … )   ( 1 … )= , , , = , ,l l l l t
rJ r l k , and ⊗  denotes the Kronecker product. Note 

that 21 ( 1) 21 1+ + / =k r r r
X  holds. Note that the matrix X is full column rank 

which is  K. We denote the liner space spanned by the columns of the 

2
1 ( 1) 2= − = − / −d r K r r k , full column rank matrix such that the linear 

space spanned by the columns of  U, i.e., S(U), is the orthogonal 
complement of the space S(X). Thus, 

1 ,=t
d KU X O  where 

1,d KO  is the   

1×d K zero matrix. Therefore the 2
kLS  model is expressed as 

11( ) 0= dh p
where 

1
0d  is the 1 1×d  zero vector and 1( ) log= th p U p . 

The 2
kMME   model may be expressed as 2 ( ) 0=h p  where 2( ) =h p Wp  

with 
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Thus tW  belongs to the space S(X), i.e., ( ) ( )⊂tS W S X . Hence 
2 1,= d dWU O  where 2 =d k  . From Theorem 1, the S2 model may be 

expressed as 
33 ( ) 0= dh p  where 3 1 2 ( 1) 2= + = − /d d d r r  with 3 1 2( )= ,t t th h h  . 

Let ( )sH p , 1 2 3= , , ,s   denote the 2×sd r  matrix of partial derivatives of 
( )sh p  with respect to p, i.e., ( ) ( )= ∂ / ∂ t

s sH p h p p . Let ( ) ( )Σ = − tp diag p pp
, where ( )diag p  denotes a diagonal matrix with i th component of 
p as i th diagonal component. Let p̂ denote p with { }ijp  replaced by 
{ }ˆ ijp  , where ˆ = /ijij n np . Then ˆ( )−n p p  has asymptotically a normal 
distribution with mean 20

r
 and covariance matrix ( )Σ p . Using the 

delta method, 3 3ˆ( ( ) ( ))−n h p h p  has asymptotically a normal distribution 
with mean 

3
0d  and covariance matrix 

1 1 1 2
3 3

2 1 2 2
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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t t
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We see that 2 11( ) 1 0= =t
dr

H p p U   since 21 ( )⊂
r

S X ,  1( ) ( ) = tH p diag p U

and 2 ( ) =H p W . Therefore we obtain

1 21 2( ) ( ) ( ) ,Σ = = .t t t
d dH p p H p U W O

Thus we obtain 3 1 2ˆ ˆ ˆ( ) ( ) ( )∆ = ∆ + ∆p p p  , where 
1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) [ ( ) ( ) ( ) ] ( )−∆ = Σ .t t

s s s s sp h p H p p H p h p

matrix X by S(X) with the dimension K. Let U be an 2
1×r d , where 

http://afst.cedram.org/item?id=AFST_1965_4_29__77_0
http://www.sciencedirect.com/science/article/pii/0167715283900512
http://archive.numdam.org/ARCHIVE/JSFS/JSFS_2007__148_3/JSFS_2007__148_3_3_0/JSFS_2007__148_3_3_0.pdf
http://www.stat.tugraz.at/AJS/ausg082/082Tahata.pdf
http://ideas.repec.org/a/eee/jmvana/v34y1990i2p173-184.html
http://www.springerlink.com/content/651404391vm76833/
http://www.jstor.org/pss/2240069
http://www.jstor.org/pss/2333101
http://www.jstor.org/pss/2238402


Citation: Tahata K, Tomizawa S (2011) Generalized Linear Asymmetry Model and Decomposition of Symmetry for Multiway Contingency Tables. J 
Biomet Biostat 2:120. doi:10.4172/2155-6180.1000120

Volume 2 • Issue 4 • 1000120
J Biomet Biostat
ISSN:2155-6180 JBMBS, an open access journal

Page 6 of 6

Under each ( ) 0=
ss dh p ( 1 2 3)= , ,s , the Wald statistic ˆ( )= ∆s sW n p   has 

asymptotically a chi-squared distribution with sd  degrees of freedom. 
From the asymptotic equivalence of the Wald statistic and likelihood 

ratio statistic, we obtain Theorem 3 when 2=T . The proof is completed. 
The proof of Theorem 3 when 2>T is omitted because it is obtained in 
the same way.
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