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Introduction
G-protein coupled receptors (GPCRs) constitute the largest

members of cell surface transmembrane signaling proteins that exert 
critical role and form the basis of the most important signaling pathways. 
The human genome comprises approximately 1000 members of GPCRs 
family that response to extracellular stimuli such as light, ions, small 
molecules, peptides, hormones and neurotransmitters. On the basis of 
sequence similarity GPCRs are divided into three distinct families A, 
B and C. Family A is the largest and highly heterogeneous family of 
GPCRs and includes rhodopsin, the adrenergic receptors, the olfactory 
and members of the Somatostatin receptor (SSTR) family. Family B is a 
small family of GPCRs, consists the gastrointestinal peptide hormone 
receptor family, corticotrophin- releasing hormone, calcitonin and 
parathyroid hormone receptors. Family C also known as the glutamate 
family includes metabotropic glutamate receptor family, the GABAB 
receptor and the calcium-sensing receptor (CaSR) and taste receptors 
(TRs) [1]. One of the most prominent characteristics of GPCRs is the 
heterodimerization within the family or distantly related receptors. 

Several previous studies culminated in the unveiling of a family 
of SSTRs comprised of five isoforms of closely related size, termed 
SSTR1 to SSTR5. The five SSTR subtypes display the seven α helical 
transmembrane segments typical of heptahelical receptors (HHRs) 
and belong to family of GPCRs [2]. SSTR subtypes share a high 
degree of amino acid sequence identity, ranging from 37 to 59% 
[2-4]. All SSTR subtypes share the structural motif in the seventh 
transmembrane domain, which serves as a signature sequence for the 
receptor family [2]. SSTR subtypes are coupled to multiple second 
messenger systems through their specific interaction with pertussis 
toxin-sensitive heterotrimeric G proteins [2]. All SSTRs display acute 
G-protein uncoupling in response to treatment with SST and undergo
rapid internalization, except SSTR1 [5-13]. SSTR1 is the only receptor
subtype that is upregulated at the cell surface in response to agonist
activation. In contrast, SSTR3 is the only receptor subtype which
internalizes the most and does not recycle back to the membrane; and
rather targeted for degradation [2]. The distinct pattern of expression
and multifunctional properties of SSTR subtypes elucidate the
complexities in somatostatinergic system. In human, SSTR subtypes
play crucial role in central and peripheral tissue and produce a different 
array of endocrine, exocrine, neuronal and immune cell to inhibit
secretion, modulate neurotransmission and regulate cell proliferation.
Increasing biochemical and functional evidence suggest that GPCRs
display homo and heterodimerization or even the formation of higher
degree of oligomers which are associated with distinct pharmacology
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and agonist induced receptor trafficking. SSTR subtypes pharmacology, 
trafficking and receptors mediated signaling have been reviewed 
extensively elsewhere [1,2]. This review will focus on homo-and 
or heterodimerization of SSTR subtypes and discussed the role of 
key effectors molecules which might regulate GCPRs signaling and 
trafficking. 

G-protein coupled receptors and dimerization 

Protein-protein interaction of cell surface proteins is considered 
one of the most dynamic responses of cells. The concept that GPCRs 
exist and function in monomeric entities at the cell surface has recently 
been challenged. Several recent biochemical and functional studies 
suggest that most if not all GPCRs function as homo-and heterodimers 
or even higher order of oligomers. Upon agonist activation, GPCRs 
initiate a cascade of responses by regulating a class of three-subunit 
proteins termed G-proteins, named for their binding to guanosine 
triphosphate (GTP). GPCRs share common structure as seven 
transmembrane-sparing helices with extracellular N and intracellular C 
terminus (C-tail). In addition to exhibit desensitization, sequestration, 
down-regulation or even up-regulation, importantly dimerization/
oligomerization is one of the unique modes of GPCR regulation and 
has been reviewed in great depth [14-17]. It is now well established that 
many cell surface receptors form oligomeric structures as a prerequisite 
for signal transduction. For instance, in pituitary cells, the importance 
of luteinizing hormone-releasing hormone receptor dimerization has 
been shown to be essential in the release of luteinizing hormone [18]. 
The earliest direct physical evidence for GPCR dimers formation came 
from investigation on immunoaffinity chromatography and western 
blot analysis of β2-adrenergic receptors (β2ARs) from lung origin [19] 
and covalent cross-linking of angiotensin II to its binding sites in rat 
adrenal membranes [20]. Additional evidence for the dimerization of 
GPCRs came from radiation inactivation and photoaffinity labeling 
experiments, where a number of receptors were demonstrated to be 
larger than predicted based on simple monomeric structures [21]. The 
process of receptor dimerization has been shown in the endoplasmic 
reticulum, the site of the receptor synthesis indicating role of receptor 
dimerization at the early stage of receptor synthesis [22].

Development of recombinant DNA expression systems has 
served as an instrumental tool to study the functional significance of 
GPCR dimers. Various GPCR mutant or chimeric constructs could 
be reconstituted when co-transfected in cells. For instance, when two 
functionally inactive GPCR chimeras, one possessing the first five 
transmembrane domains (TMs) of the α2-adrenergic receptor and the 
last two TMs of the muscarinic m3 receptor and vice versa, allowed 
for restoration of both receptors functionality [23]. Similar results 
have also been described for the angiotensin II receptor [24]. Several 
other member of GPCRs family such as the luteinizing hormone 
and vasopressin V2 receptors also behave in same manner [25-28]. 
The formation of dimeric or even oligomeric receptor-complexes 
is additionally supported by complementation assays [21]. One of 
the early studies on β-adrenergic receptor dimerization provides 
the first convincing evidence of the functional significance of GPCR 
dimerization [29]. In this study, Hebert et al. described the effects of 
peptide mimicking TM VI of the β2AR [29]. Authors finding were quite 
intriguing, as the treatment of β2AR expressing cells with the peptide, 
blocked dimerization and agonist induced signaling. Furthermore, the 
effect was specific to peptides corresponding to TM VI of the receptor, 
as other TM peptides had no effect. Ligands also play critical role in the 
equilibrium of the complex treatment with the agonist isoproterenol 
stabilized the dimers and prevented the TM peptide from interfering 

whereas inverse agonists were found to favor the stability of monomers. 
A functional role for the dimerization of δ-opioid receptor (δOR) has 
also been reported, however, in this case, agonist treatment resulted in 
the dissociation of pre-existing dimers, a property that when perturbed, 
disrupt receptor internalization [30].

Exploration of receptor dimerization

The cloning and characterization of the γ-aminobutyric acid 
receptor B1 (GABABR1) trigger the importance of GPCR dimerization 
[31]. However, although the receptor was capable of binding GABA 
agonists when expressed in cells, it was largely non-functional and 
incapable of efficiently coupling to potassium channels. Interestingly, 
receptor is largely retained intracellularly due to inefficient transport 
to cell surface. Later, a second GABAB subtype was cloned and termed 
GABABR2. Unlike GABABR1, this receptor-subtype could traffic to 
the cell surface but did not bind GABA agonists. It was only following 
the co-expression of both receptor-subtypes did the formation of a 
fully functional GABAB receptor that displayed efficient trafficking 
to the cell surface [32-37]. Assembly and cell surface targeting of the 
GABAB receptor occurs primarily at its carboxyl-terminus [34,37,38], 
although it has been demonstrated that heterodimerization can occur 
through other regions such as their transmembrane domains [38,39]. 
The carboxyl-terminus of GABABR1 possesses a motif that retains 
it in the endoplasmic reticulum, however, this motif is masked by 
interaction with the C-terminus of GABABR2 [34,37,38]. These studies 
were the first to provide strong evidence on the importance of GPCR 
dimerization in receptor transport and function. Further in support, 
studies on taste receptors revealed that heterodimerization between 
receptor-subtypes plays an important role in receptor function. As 
described, cells expressing T1R1, T1R2 or T1R3, were unresponsive to 
sweet stimuli [40-46]. Most importantly, cells cotransfected with T1R2 
and T1R3 caused receptor-activation in presence of sweet tastants 
[45], suggesting the formation of functional heteromeric complex. 
In addition to the GABAB and taste receptors, other members of the 
class C family of GPCRs have also been reported to exist as dimers. 
For instance, calcium-sensing receptor and the metabotropic glutamate 
receptor subtype-5 exist as constitutive disulfide-linked dimers [47-50]. 
Furthermore, crystal-structure analysis of the large N-terminal portion 
of the metabotropic glutamate receptor subtype-1, revealed it to exist as 
a dimers hinged by disulfide bonding [51]. A large body of accumulated 
studies indicates that GPCRs dimerization is not restricted amongst the 
members of this family but also expanded to other receptor categories. 
These expansions of protein-protein interaction have been possible 
only by improved methodological approaches. Interestingly, recent 
studies suggest that GPCR can also form heterodimers with ligand 
gated channels such as N-methyl-D-aspartate receptors (NMDARs) 
and GABA-A receptors as well as receptor tyrosine kinase family [52-
56].

Methodological advances in understanding of receptor 
dimerization

Although, several studies as discussed above contribute significantly 
to our understanding on the dimerization of GPCRs were largely 
accomplished using classical biochemical techniques. Since disulfide 
cross linking is irreversible and occurs in time dependent manner 
limited these observations on stable and transient complex formation. 
Furthermore, lack of large extracellular domain in class A subfamily 
of GPCRs is not supportive to disulfide linkage. In 2000, this caveat 
in cross linking overcomes by using resonance energy transfer (RET) 
[57-59]. In particular, the application of RET techniques has served 
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as an instrumental tool to study GPCRs. One of the most common 
RET techniques used in the study of GPCR dimerization called 
bioluminescence energy transfer (BRET) was first adopted to study 
β2-adreneric receptor dimerization in living cells [57]. Although, the 
technique has its advantages as well as limitation, there is one intrinsic 
disadvantage when studying GPCRs; BRET cannot discriminate 
between dimers present at the cell surface or those present during 
synthesis in the endoplasmic reticulum. Another technique that also 
overcomes the problems of direct fluorescence energy transfer (FRET) 
measurements is photobleaching FRET (pbFRET), which exploits the 
photobleaching process of fluorophores. The application of pbFRET 
was originally developed by Gadella TW Jr and Jovin TM, Kubitscheck 
U et al. and Young RM, et al.  in the early 90’s [60-62], and introduced to 
study the dimerization of SSTRs [59,63]. Donor photobleaching FRET is 
the process of photobleaching the donor fluorophore under the intense 
illumination of its excitation wavelength, while measuring the changes 
in the intensity of its fluorescence in the absence or presence of the 
acceptor fluorophore. If the acceptor is in close enough proximity to the 
donor, (10-100 Ǻ), FRET occurs and competes with the photobleaching 
process, decreasing the rate of photobleaching. One advantage in using 
this method is that the time constants are measured in the second 
to minute range unlike regular FRET which occurs in nanosecond 
time scale, thereby omitting the need for complex digital imaging 
instrumentation. Given the small distance that is needed for FRET to 
take place, it can be assumed that the receptors are in association. The 
pbFRET technique is not restricted to the use of conjugated antibodies, 
as fluorescently labeled ligands [64,65] and receptors fused with the 
different variants of green fluorescence proteins have also been used 
[66]. These two techniques have been used extensively to determine 
protein-protein interaction and contributed significantly to structure, 
function and regulation of GPCRs. Accordingly, the data discussed here 
regarding SSTR homo-and heterodimerization are generated by using 
pb-FRET analysis and classical biochemical methodologies. The use of 
these advance techniques provided new insight in our understanding of 
receptor orientation, stoichiometry and close proximity of interacting 
proteins as homo and heterodimers. Furthermore, there are key 
signaling membrane associated proteins also play crucial role in GPCR 
mediated signaling pathways with or without receptor specific agonist. 

Molecular determinant of GPCRs dimerization 

The prominent characteristic properties of GPCR including 
binding, trafficking and signaling is not only dependent on GPCR 
but is also directed by some cell membrane associated proteins which 
interact with these receptors [67]. To execute distinct, selective and 
specific degree of responses including those of signaling message, cells 
have an ability to reorganize several key signaling proteins in a precise 
manner and orientation in a prearranged membrane atmosphere along 
with GPCRs and adaptor proteins [68]. Amongst them are the GPCRs 
which respond to external and internal stimuli and determine the cell 
message. In addition to classical biochemical and pharmacological 
applications, significant methodological progress and advances have 
been made to understand the structure, function and regulation 
of GPCRs in last ten years. However, elucidating the functional 
consequences of such interactions and understanding of the molecular 
mechanism involved will serve as an excellent experimental tool in 
search of novel therapeutic drugs. Since these proteins have a tendency 
to interact with different GPCRs, that makes it difficult to identify a 
drug which can induce disruption of this intricate protein–protein 
interaction [69]. GPCRs govern significant importance as therapeutic 
drugs target, however due to complex protein purification procedures 
leading to insufficient protein amount, the knowledge gained so far on 

structural organization and characterization of these receptor proteins 
by using NMR and crystallography posed some limitations [70]. 

To overcome these technical limitations and to define the molecular 
details of these critical integrated cell surface protein-protein complex 
formation and ligand-protein interaction, the use of mass spectrometry 
(MS) analysis has been explored. While MS is the best tool to study post 
translational changes but have not been used frequently to study GPCRs 
because of the poor expression and highly hydrophobic nature of TM 
domain which contain a site for ligand binding. Therefore, improved 
ways to yield high production of membrane proteins and proteomics 
analysis are in immediate need [70]. Identification of specific residue 
in receptor protein responsible for different function including 
glycosylation and binding sites for small molecules will enable us to 
develop therapeutically beneficial drug candidates.

While many members of GPCRs family tend to couple selectively 
to a specific G protein, single GPCR can also couple to multiple 
heterotrimeric G proteins including purinoceptor (P2Y11), β2AR, 
β3AR, 5HT2C and dopamine receptor subtypes [71]. Such a dynamic 
and functional interaction between GPCRs and G proteins is often 
monitored by agonist binding. SSTR subtypes which are generally 
coupled to Gi have also been reported to couple Gα14 which is a member 
of the Gq family in cells and receptor specific manner [72]. 

In addition to heteromeric G-proteins which couple to GPCR, 
receptor signaling and trafficking are also closely monitored by 
intracellular GPCR-interacting proteins such as G-protein couple 
receptor kinases (GRK) and β-arrestin associated pathways that 
have been studied extensively [73-78]. In particular, SSTR subtypes 
heterodimerization alters the association kinetics of β-arrestin to 
SSTR2 and enhances the receptor expression back to cell surface with 
increased inhibition of adenylate cyclase, activation of MAPKs and 
up-regulation of the cyclin-dependent kinase inhibitor p27Kip1 are all 
features observed after receptor heterodimerization [79].

Recently changes in GPCRs pharmacology specifically for the 
members of B family commonly known as secretin family has been 
shown to be modulated by type 1 protein known as receptor activity-
modifying proteins (RAMPs). RAMP1 exhibits 30% identity with 
RAMP 2 and RAMP 3 and are differentially expressed at the molecular 
levels and exert distinct role on receptor pharmacology [80-82]. The 
role of RAMPs is not only limited to class B family but has also been 
shown to be associated with calcium sensing receptor trafficking to 
the cell membrane from endoplasmic reticulum as well as receptor 
glycosylation [83,84]. These observations altogether indicate that the 
role of RAMPS is not limited to family B but may also influence the 
functionality of other GPCRs. In addition, certain other molecules also 
play crucial role in GPCRs mediated signaling and trafficking directly or 
indirectly includes Regulators of G-protein signalling (RGS) which are 
linked to GPCR signaling termination due to GTP activated hydrolysis. 
GPCR-associated sorting proteins (GASPs), Homer proteins and PDZ 
proteins have also been associated with modulation of GPCRs function 
[82].

The integrated membrane-associated entities including receptors, 
G proteins, effector molecules and enzymes as well as small essential 
proteins are intimately associated with GPCR signaling directly or 
indirectly. Furthermore, apart from these crucial proteins as discussed 
above, GPCRs compartmentation and arrangement at cell surface also 
play pivotal role on GPCRs pharmacology, trafficking and signaling 
pathways. Consistent with the existing notion that rapid signaling 
is a unique feature of GPCRs, low levels of receptor and uneven 
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distribution of these key signaling molecules in cells fail to translate 
the rapid signaling responses. To overcome this biological hurdle, cells 
have an ability to accommodate these signaling molecules in specific 
microdomain with in the membrane to exert rapid response. Such well 
studied and established microdomains in the plasma membrane are 
considered to be lipid rafts composed of sphingolipid and cholesterol. 

Thus, enrichment of GPCR signaling components in lipid rafts or 
caveolae may be a universal mechanism for increasing the effective 
concentration of these proteins by restricting their movement, diffusion 
constant and velocity thereby favoring interaction of these proteins in 
the signal transduction pathway. The presence of receptor proteins in 
lipid raft not only influences signaling but also involve in regulation of 
receptor trafficking.

Previous studies attest the role of preferential compartmentation 
of GPCR signaling proteins in caveolae or lipid rafts as a major 
determinant of receptor- effector coupling. For instance, in cardiac 
myocytes, β1AR and β2AR are confined in caveolae or lipid rafts in 
association with membrane Gs and exert crucial role in activation of 
AC in isofrom specific manner [85-90]. In contrast, some GPCR as well 
as G protein are devoid of their presence in lipid raft fractions and do 
not couple to AC such as EP2 receptors in cardiac myocytes.

Somatostatin receptors: an example of diversity in 
dimerization

Somatostatin receptors homodimerization: The distributional 
pattern, presence of multiple receptors on a single cell and 
pharmacological properties of SSTR subtypes or other members of 
GPCRs family provide the first evidence that these receptors might 
function in a concert to enhance the receptor function or even 
might blunt the cell responses upon agonist binding. One of the best 
established examples is the inhibition of forskolin stimulated cAMP. 
In the case of SSTRs, previous studies have shown a great diversity in 
response to agonist induced activation [91]. All five SSTR subtypes have 
been described for dimerization and there are compelling evidences 
for the agonist dependent dimerization of SSTRs in receptor specific 
manner using a combination of morphological, pharmacological, 
biochemical and biophysical techniques [59,63]. As illustrated in 
Figures 1 and 2, SSTR subtypes display distinct pattern of dimerization 
in basal condition and following agonist treatment. SSTR1 appears to 
be unique among SSTRs that exist as a monomer in monotransfected 
cells with or without agonist activation. This specific nature of SSTR1, 
whether expressed in Chinese hamster ovary (CHO-K1) or Human 
Embryonic Kidney cells (HEK-293) may be mechanistically linked to its 
lack of internalization even upon prolong agonist treatment [6,8,65,92]. 
SSTR1 monomers exhibit efficient receptor coupling which suggests a 
functionally active receptor even as monomer. Thus the criterion for 
receptor to be active only when they form dimers does not remain the 
absolute requirement for its functionality. However, switching SSTR1 
C-tail with the C-tail of SSTR5 enables SSTR1 to exhibit dimerization, 
indicating the sequence of amino acid arrangement in C-tail could play 
determinant role. Whether or not SSTR1 function in a similar manner 
in neuronal or other cells expressing receptor endogenously need to be 
determined. 

The human SSTR2 in basal condition exists as a constitutive 
homodimer at the cell surface and dissociates into monomers upon 
agonist treatment [64,93]. The existence of constitutive GPCR dimers 
and ligand-induced dissociation of other GPCR heterodimers has 
been demonstrated [30,94-99]. Cvejic and Devi reported that δ-opioid 
receptor dimers dissociation was necessary for receptor-internalization 
[30]. In contrast, regulated dimerization of the platelet activating 
factor receptor and the thyrotropin-releasing hormone receptor were 
shown to increase internalization [100,101]. SSTR2 homodimers 
like δOR dimers regulates receptor internalization tempted further 
crosslinking studies which demonstrated that preventing dissociation 
of SSTR2 homodimers hampers the rate of receptor internalization 

Figure 1: Schematic illustration showing receptor specific dimerization of 
somatostatin receptor subtypes in absence or presence of agonist. SSTR1 
exist as monomer with or without agonist. SSTR2 exist as a constitutive dimer 
and dissociates upon agonist treatment. SSTR3 is a preformed dimer and 
following treatment with agonist dissociates partially to monomer. SSTR4 exist 
as dimer and dimerization is further stabilized in presence of agonist treatment. 
Conversely, SSTR5 in basal condition exist as monomer however, upon agonist 
treatment exhibited dimerization.

Figure 2: Histograms depicting relative FRET efficiency in HEK-293 cells 
stably transfected with SSTR subtype 1-5. FRET efficiency was determined 
at cell surface by using microscopic Pb-FRET analysis in control and upon 
SST treatment. Changes in relative FRET efficiency are indicative of receptor 
dimerization. Note the distinct but significant changes in SSTR2 and SSTR5 
upon agonist treatment.
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[64]. Interestingly, porcine SSTR2 dimers display dissociation prior to 
internalization [93]. Taken in consideration these studies suggest that 
dissociation of SSTR2 is a common characteristic in all species and is a 
prerequisite of receptor internalization.

SSTR3 from rodent origin exists as a constitutive homodimer with 
or without ligand binding [99]. In comparison to rat SSTR3, human 
SSTR3 also exists as preformed dimer which decreases upon treatment 
with receptor specific agonist [102]. In addition to the differences 
in receptor origin, the methodology used in these two studies may 
account for discrepancy. Pfeiffer et al. used co-immunoprecipitation 
where as War et al. applied microscopic pbFRET analysis [99,103]. 
Recent study dealing with somatostatin receptor-3 (SSTR-3) described 
a distinct pattern of internalization upon agonist activation and also 
its association in induction of apoptosis [102]. The presence of SSTR3 

C-tail plays a crucial role on receptor cell surface expression, coupling 
to adenylyl cyclase, downstream signaling pathways and apoptosis 
in HEK-293 cells expressing wt-SSTR3 or C-tail deleted mutants. 
Furthermore, SSTR3 mediated inhibition of forskolin-stimulated cAMP 
was diminished with gradual extension of deletions in receptor C-tail. 
Importantly the C-tail of several other members of GPCR family has 
been shown to be associated with receptor dimerization. Accordingly, 
the results from War et al. studies describing the role of SSTR3 in C-tail 
deleted mutants may be due the loss of receptor dimerization [102].

Amongst all the SSTR subtypes, SSTR4 is the only receptor which 
has been studied the least. However, the mechanistic and physiological 
importance of the SSTR4 is derived from the receptor knockout mice 
[104,105]. These studies cumulatively suggest that lack of SSTR4 exhibit 
sustained pain and loss of analgesic effect [104,105]. Using biochemical 
and biophysical techniques SSTR4 dimerization, trafficking, coupling 
to adenylyl cyclase and signaling in HEK-293 cells has recently been 
described [106]. SSTR4 exogenously expressed in HEK-293 cells 
exhibits homodimerization, inhibits forskolin-stimulated cAMP, 
display agonist dependent changes in pERK1/2 and pERK5 expression. 
Upon C-tail deletion, receptor loses membrane expression, ability 
to dimerize and inhibition of cAMP however, displays several-fold 
increase in expression of pERK1/2. 

Unlike other SSTR subtypes, SSTR5 exists as monomer in 
basal condition and display dimerization in presence of agonist 
[59]. This is just opposite to SSTR2, despite the fact both receptors 
internalize upon agonist treatment but respond to agonist differently 
to exhibit dimerization. Interestingly, upon agonist binding SSTR2 
display dissociation of preformed dimers, conversely SSTR5 exhibit 
dimerization in concentration dependent manner. As discussed earlier, 
the expression levels of receptor play critical role on homodimerization. 
Previous studies described that over expression of SSTR5 resulted in 
aggregation at cell surface whereas low expression comparable to 
physiological expression does not exhibit dimerization. Whether all 
five SSTR subtype internalizes as monomer or dimers or this process is 
receptor selective is not known, however these observations speculate 
that upon ligand binding receptor configuration at cell surface might 
play determinant role and need to be determined.

Heterodimerization of somatostatin receptor within the 
family

In addition to displaying receptor specific dimerization, SSTR 
subtypes have shown great diversity to perform heterodimerization and 
regulation of signaling pathways (Figure 3A-D and Table 1). There are 
ten different combinations for SSTR subtypes to constitute heteromeric 
complex. Pfeiffer et al. using rodent origin of SSTR2 and SSTR3, 
demonstrated that these receptor subtypes are constitutively homo-
and heterodimerize when coexpressed in HEK 293 cells [99]. SSTR3-
selective agonist L-796,778 showed a marked decrease in binding 
affinity in SSTR2/SSTR3 co-expressing cells, suggesting negative 
cooperativity between these receptor subtypes. The SSTR2/SSTR3 
heterodimers displayed features of SSTR2 expressing cells such as, GTP 
binding, inhibition of adenylyl cyclase and ERK1/2 phosphorylation, 
but displayed relatively greater resistance to agonist-induced 
desensitization [99]. While the physiological relevance for these process 
is yet to be determined, it is important to note that these receptors are 
found to colocalize in tissues of clinical interest, such as the pancreas, 
the anterior lobe of the pituitary and in medulloblastoma temporal cells 
[99,107]. In early developmental stages of rat brain, the cerebellum 
exhibit high levels of SSTR2 and SSTR3 mRNA expression however 

 

Figure 3: Schematic illustration showing heterodimerization of somatostatin 
receptor subtypes and consequent modulation of downstream signaling 
pathways. Signaling pathways indicated represent only those which have been 
identified so far upon receptor heterodimerization. Pathways indicated in red and 
green identify inhibitory and stimulatory role of SSTR subtypes respectively. This 
illustration was constructed using the online pathway builder from Protein Lounge 
(http://www.proteinlounge.com).

Receptors Homodimers /Heterodimers References

SSTR1
SSTR1*
SSTR4*
SSTR5

[59,65,92,106]

SSTR2
SSTR2

SSTR3**
SSTR5

[64,79,99]

SSTR3 SSTR2**
SSTR3 [99,102]

SSTR4
SSTR1*
SSTR4
SSTR5

[106]

SSTR5

SSTR1
SSTR2
SSTR4
SSTR5

[59,65,79,106]

* Homo or heterodimerization not detected
** Receptor of rat origin

Table 1: Somatostatin receptors homo-and/or Heterodimerization.
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display absence of SSTR3 binding sites, which is well correlated with the 
SSTR2-mediated inactivation of SSTR3 upon heterodimerization [108]. 
Although, these are interesting observations, however, further studies 
are anticipated in this direction to support the concept that receptor 
heterodimerization may also blunt the functional properties of native 
receptors.

SSTR2 and SSTR5 were shown to directly interact, a mechanism 
regulated by agonist binding [79,109]. SSTR2 and SSTR5 
heterodimerization was induced by selective SSTR2 agonist treatment 
and not with the endogenous pan-agonist SST-14 [79], that has been 
demonstrated to enhance hSSTR1/hSSTR5 heterodimers formation 
[59,65,92]. Several heteromeric interactions have been found to 
be equally fostered following activation of just one of the receptor 
protomers [59,110,111], despite that it has been shown that stabilization 
of heterodimers between members of other family A GPCR subfamilies 
requires concurrent stimulation [96,112-117]. The SSTR2/SSTR5 
heterodimers resulted in an approximate 10-fold increase in efficiency 
for G-protein coupling and activation of MAPK which consequently 
led to an extended growth inhibitory response accompanied with an 
increased expression levels of the cyclin-dependent kinase inhibitor 
p27Kip1 [79]. 

Somvanshi et al. by performing C-tails switching between SSTR4/
SSTR1 and SSTR4/SSTR5 described that, chimeric SSTR4 with the 
C-tail of SSTR5 functions like wt-SSTR4, in contrast, with the C-tail 
of SSTR1 chimeric receptor functions like C-tail deleted hSSTR4 [106]. 
hSSTR4 dimerization and signaling are associated with increased 
cyclin-dependent-kinase p27Kip1 expression and inhibition of the cell 
proliferation. Authors also reported that SSTR4 forms heterodimers 
with SSTR5 but not with hSSTR1 with significant changes in receptor 
function. In addition, SSTR4 also elicits variable coupling in HEK-
293 cells in comparison to CHO-K1 cells. Most importantly, hSSTR4 
does not couple to G-proteins or to adenylyl cyclase when transiently 
transfected in CHO-K1 cells due to the absence of the Giα1 [118]. This 
study clearly defines a novel mechanism for the role of hSSTR4 in cell 
proliferation and modulation of signaling pathways in cell specific 
manner [106]. 

Rocheville et al. described for the first time that SSTR1 and SSTR5 
subtype exist in heteromeric complex [59]. As discussed above, SSTR1 
is the only receptor subtype which does not internalize upon agonist 
treatment and is rather upregulated at cell surface. Conversely SSTR5 
exhibited time dependant internalization. However, SSTR1 exhibit 
internalization in cells cotransfected with SSTR1/SSTR5 a phenomenon 
attributed to receptor heterodimerization [59,63]. In parallel to these 
observations homo-and heterodimerization of SSTR1 and SSTR5 was 
also obtained in live cells using Fluorescence correlation spectroscopy 
techniques [92]. In these studies, although SSTR5 was demonstrated to 
form both homo- and heterodimers with SSTR1 in an agonist-regulated 
fashion, SSTR1 remained as a monomer when expressed alone despite 
its activation with agonist. Consistent with several other studies, 
dimerization is not always a necessary mechanism in GPCR activation 
[119,120]. Further, subsequent studies showed that SSTR5 and SSTR1 
heterodimerization was specifically induced upon activation of SSTR5 
and not via activation of SSTR1 [65]. In addition Grant et al. described 
the mechanism for SSTR heterodimerization and elucidate that C-tails 
of GPCRs are integral for G-protein coupling [65]. The mechanism 
for internalization and dimerization is confined to the C-tail of 
SSTR5 discovered by interchanging this segment to the SSTR1 [65]. 
SSTR5 exhibits homodimerization upon agonist activation which was 
diminished in the presence of SSTR1 C-tail. Conversely, SSTR1 with the 

C-tail of SSTR5 displayed homodimerization in the presence of agonist, 
suggesting that C-tail is critical in receptor dimerization [65]. Most 
importantly, the ability of SSTR4 to form homodimer was not observed 
with the C-tail of SSTR1 [106]. The specificity of the C-tail in the 
process of dimerization is not restricted to SSTR subtypes only but was 
also described for δ-opioid receptor-trafficking and heterodimerization 
of GABABR subtypes GABABR1 and GABABR2 [34,37], and for μ- 
and δ-opioid receptor (ORs) heterodimerization [121]. 

SSTR1/SSTR5 heterodimerization leads to greater efficiency in 
signaling and inhibition of adenylate cyclase and cAMP synthesis 
[65]. Our recent studies revealed that cells co-expressing SSTR1/
SSTR5 showed a 50-fold increase in signaling efficiency with octreotide 
despite the lack of affinity for SSTR1 in comparison to cells expressing 
SSTR5 alone [65]. Increased signaling efficiency did not translate 
to increased efficacy suggesting that heterodimerization altered the 
message communicated. Reduced efficacy, suggests that SSTR1/SSTR5 
heterodimers are less responsive to octreotide drug treatment and this 
has clinical implications in the treatment of human prolactinomas. 
These prolactin hypersecreting tumors found in the pituitary strongly 
co-express SSTR1 and SSTR5 subtypes [122,123]. Most importantly, 
tumors with strong SSTR1 expression levels respond more poorly to 
octreotide treatment than those with less SSTR1 expression regardless 
of SSTR5 presence [122]. 

Physiological significance and clinical implication of 
somatostatin receptor heterodimerization

Several previous studies provide evidence and support to the 
concept of that GPCRs represent the major target for new drugs 
development. Although, studies have described the pharmacological 
and physiological significance of SSTRs, however the role of SSTR 
subtypes in pathological conditions still remains elusive. SSTR subtypes 
not only interact as heterodimers with other closely related receptors 
including DR, AR and OR subtypes but also constitute functionally 
active complex with distantly related receptor protein such as NMDA 
receptors of ionotropic and epidermal growth factor receptors (EGFRs) 
of receptor tyrosine kinase (RTKs) families and govern many clinical 
implications [54,55,63,124-126]. If not all, most of the GPCR functions 
as homo-or heterodimers and the process of heterodimerization may 
enhance the existing functions of the native receptor. These unique 
properties of the receptor and therapies target the action of GPCR in 
pathological conditions have been used as one of the most favorable 
and successful therapeutic approach in designing the new drugs. The 
somatostatinergic system plays versatile role in different parts of the 
body to control hormonal secretion, regulation of ionic channels, 
modulation of signaling pathways and most importantly inhibition of 
cell proliferation in tumor with a significant promise for the development 
of new drugs in multiple therapeutic discipline with clinical outcome. 
In this direction significant progress has been made to understand the 
pathophysiology of pituitary tumor ‘acromegaly’ and somatostatin 
receptors [127]. Over 90% of patients on SST-analogs show reductions 
in circulating GH levels, while approximately 70% of those achieve 
biochemical normalization. Approximately 50% of patients will have 
tumor shrinkage with SST-analog treatment [128-133]. This property 
is specific to tumors of the pituitary whereas no other neuroendocrine 
tumors share this characteristic [130,134-137]. Incidentally, SSTR2 and 
SSTR5 are the two receptor subtypes predominantly expressed in GH 
hyper-secreting pituitary adenomas and therefore, heterodimerization 
of SSTR2/5 seen in presence of SST analogs could account for clinical 
outcomes [138,139]. Most importantly, future studies for the role of SSTR 
subtypes in neurodegenerative diseases will be of great importance. 
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The possibility of functional crosstalk between SSTRs and ORs or/and 
adrenergic receptors may provide some pathophysiological significance 
in pain and heart failure respectively [124-126]. Recent studies from 
author laboratory describing that SSTRs functionally interact with 
EGFR and modulate tumors promoting signaling pathways are of great 
importance to understand the pathological significance of inverse 
relation of these two receptor proteins in tumor biology [54-56]. In the 
central nervous system colocalization of SSTR with NMDA receptors 
has been shown. Whether these receptors functionally interact with 
each other is not known and need to be determined in neuronal cells. If 
such interaction is established that will elucidate the new role of SSTR 
subtypes in regulation of ion gated channels and its implication in 
excitotoxicity and neurodegenerative diseases.

Conclusions and future direction

Dimerization of SSTR subtypes, with specific interest on 
heterodimerization within the family or other GPCRs, generates novel 
receptors with unique properties distinct from those of the individual 
monomers/homodimers and heterodimers complex of receptor. 
However, future studies are essential to ascertain the role of SSTR in 
regulating the receptor pharmacology, coupling to effectors molecules, 
physiological responses of cells and downstream signaling cascades. 
There are many questions still to answer and much remains to be 
explored in relation to SSTRs or in broader sense to GPCR homo-and/
or heterodimerization. In time to come, future studies with concept 
of clinical requirement in mind should be directed in pathological 
conditions. The regulations of cell surface receptor proteins hold the 
great promise in developing new drugs. Importantly, new studies on 
SSTRs heterodimerization with receptor tyrosine kinases will foster 
novel therapeutic approach in treatment of various tumors showing 
high expression of EGFR and resistance to tumor therapy. To study 
the clinical implication of SSTR homo-and heterodimerization future 
studies on receptor knockout and transgenic mice with disease 
phenotype will be useful approach to elucidate receptor specific role. 
In conclusion, to determine the cellular target of SSTRs heteromeric 
complexes in vivo and/or in pathological conditions will be worth of 
investigation in future.
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