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Introduction
Signature writing is a well-learned [1] but highly complex 

perceptual motor task [2,3], invoking the coordinated activation of 
both proximal (e.g., thenar) and distal (e.g., trapezius) muscles [4], 
relying upon the central role of proprioception and the secondary role 
of vision [5], integrating kinesthetic input [6] and harnessing short-
term memory [7]. The complexity of these biomechanical and cognitive 
systems introduces variations between and within individuals [2].

The advent of kinetic utensils that measure the forces applied by 
the fingers on the pen [8-10] has spawned numerous investigations 
of handwriting grip kinetics. Most of these studies have been clinical 
in nature, with the goal of using handwriting grip forces to inform 
diagnosis and treatment of handwriting disorders [8,9,11,12]. However, 
studies of handwriting grip kinetic variability in the adult population 
is very limited [3]. Recently, we studied the variability of grip kinetics 
associated with signature writing in adults [1,13] and found that the 
variability of kinetic topographies (i.e., grip shape) between individuals 
was much higher than the variability within an individual, even when 
considering signatures collected over several months. These findings 
encouraged the study of variations in a summative handwriting grip 
kinetic profile, which is the time series of total force variation over the 
course of a signature.

In sports such as tennis, baseball and golf, the within- and between-
subject variations of kinetic profiles have been studied with the aim 
of optimizing player performance [14]. The grip force profile of a golf 
swing was found to be repeatable within a player and distinctive between 
players [14-16]. Gait studies have found that the kinetics associated 
with walking in adult participants are repeatable for the same person 
on multiple days [17,18]. Grip force patterns have also proven to be 
valuable for biometric verification in gun control applications, which 
suggests grip consistency within individuals [19,20]. A recent review of 
keyboarding-based biometrics showed that, in addition to considering 
the time to type, the latency between keystrokes, and many other 
features, few studies have considered the keystroke pressure applied by 
the fingers on the keys, a potential discriminative feature [21]. Salami 
et al. [22] and Sulong et al. [23] proposed a keyboard embedded with 
sensors capable of measuring the force applied on each key and the 

latency between keystrokes as a mean to authenticate a user while 
typing. Using multiple classifiers, it was found that the combination 
of pressure and latency yielded better user authentication than that 
achievable with either feature alone. In similar spirit, finger pressure 
has been deemed to be more discriminative than hold-time and inter-
key duration for the authentication of touch pad users [24].

In the field of handwriting authentication and signature 
verification, intra- and inter-participant variations of axial pen 
pressure, spatiotemporal features and kinematic characteristics 
have been explored [2,25-29]. Ramsay [2] modeled the dynamics of 
spatiotemporal information of handwriting using a differential equation 
and classified handwriting samples of different individuals. Lei and 
Govindaraju [26] examined the consistency and discriminative power 
of multiple features commonly used in on-line signature verification 
systems, concluding that the pen-tip coordinates, speed, and angle 
between the speed vector and the horizontal axis of the writing surface 
were among the most consistent features. Another study found that 
the dynamic features (speed, angle, axial pressure, and acceleration) 
surpassed static features in discriminative capability between genuine 
writing and skilled forgeries [27]. Bashir and Kempf [30,31] recently 
identified person-specific features in grip force signals and reported 
improved writer recognition when a grip force signal was added to the 
classifier. However, these studies were based on samples collected in 
one session and did not examine the effect of intra-subject variability 
over time. The discriminative potential of handwriting grip kinetics 
has yet to be fully ascertained. This study thus set out to investigate 
one aspect of this potential, namely, to quantify the variability of grip 
kinetic profiles between adults while writing the same well-practiced 
signature over multiple days and multiple times within the same day.
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Abstract
Previous studies of handwriting grip kinetics have demonstrated the ability to classify writers based on the 

topography of grip forces associated with signature writing. However, the topographic representation requires a large 
array of individual sensors in practice. The possibility of differentiating participants on the basis of a summative, temporal 
force profile is yet unknown. In this study, we investigated the variability of features derived from a time-evolving total grip 
force profile. Using an instrumented writing utensil, twenty adult participants provided 600 samples of a well-practised 
bogus signature over a period of 10 days. Deploying a combination of temporal, spectral and information-theoretic 
features, a linear discriminant analysis classifier outperformed nonparametric and nonlinear classifier alternatives and 
discriminated among participants with an average misclassification rate of 5.8% as estimated by cross-validation. These 
results suggest the existence of a unique kinetic profile for each writer even when generating the same written product. 
Our findings highlight the potential of using grip kinetics as a biometric measure.
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Methods
Participants

To generate the required database, we recruited a convenient 
sample of 20 participants with an age range of 18 to 45 years and a mean 
of 27 ± 6 years. The sample included 8 males/12 females and 17 right-
handed/3 left-handed participants. Individuals with a known history 
of musculoskeletal injuries or neurological impairments were excluded 
from the study. The study protocol was approved by the research ethics 
boards of Holland Bloorview Kids Rehabilitation Hospital and the 
University of Toronto. An informed written consent was signed by 
each participant. Demographic information such as age, gender and 
handedness were also collected from each participant.

Instrumentation

To collect the required data, the instrumentation setup shown in 
Figure 1 was used. Grip force signals, which are the forces applied by the 
fingers on the pen barrel, were acquired at 250 Hz via an instrumented 
writing utensil adorned with an array of Tekscan 9811 force sensors 
[1,8]. A custom-made data acquisition box transferred these signals 
to the data collection computer where they were saved for processing. 
A systematic calibration procedure, detailed in Ghali et al. [1], was 
performed on the force sensors every 2 to 3 days to derive calibration 
curves needed during pre-processing of the grip force data. During 
calibration and data analysis, only the subset of sensors that covered 
the pen barrel (32 sensors of the 96 sensors array) was considered. The 
sensor array was replaced when a sensor malfunction due to wear and 
tear was observed. The axial forces applied by the pen on the writing 
surface along with the pen tip position and pen angles (twist, altitude 
and azimuth) were acquired by a Wacom Cintiq 12 WX digitizing LCD 
display at a frequency of 105 Hz. These latter signals were synchronized 
with the grip force signals using the developed data acquisition 
software. A grounding strap was placed on the non-dominant hand of 
each participant to reduce noise in the grip force signals.

Data collection protocol

The bogus signature shown in Figure 2 was given to all participants. 
Each participant practiced the bogus signature by writing it repeatedly 
on paper 25 times a day for two weeks. After the practice period, 
each participant completed 30 sessions of data collection over 10 
days that spanned an average period of 20:4 ± 3:6 days depending 
on the participant’s availability. On each day, three sessions were 
performed at different times of the day. In each session, the participant 
sat comfortably on a chair, donned the grounding strap on the non-

dominant hand, held the instrumented pen with the dominant hand 
and wrote multiple signature samples within the specified area on the 
digitizing tablet. A researcher was always present to check the force 
sensors at the beginning of each session and to note any writing mistakes 
or events that could affect the data. In each session, a 10 second baseline 
of the force sensors was collected prior to writing to determine the pre-
grip value of each sensor. Twenty samples of the bogus signature and 
twenty samples of the participant’s authentic signature were collected 
during each session. A total of 600 well-practiced bogus signatures and 
600 authentic signatures were obtained from each participant over the 
30 sessions. In this study, only the bogus signatures are considered. An 
analysis of the authentic signatures was reported in Ghali et al. [1].

Data pre-processing

Through visual inspection of the bogus signatures and their 
associated grip force signals, and a review of the researcher notes 
taken during each session, some signature samples were identified 
as possessing a long pause, a mistake or a sensor malfunction while 
writing. These samples (417 bogus signatures across all participants) 
were excluded from subsequent analyses. Other signature samples that 
exhibited extra strokes because of accidental contact with the writing 
surface before or after writing were salvaged by adjusting the start or 
end time of the signature, respectively.

The high frequency noise in the grip force signals was removed 
using a Butterworth low pass filter with a cut off frequency of 10 Hz, 
below which resided more than 95% of the signal power. Some samples 
(1105 bogus signatures) had a low frequency oscillating noise that 
could not be removed and were thus excluded from further analyses. 
The remaining 10478 signature samples (87.3% of the 12000 samples; 
average 524 samples per participant) were translated into signals with 
physical force units (Newtons) [1].

Feature extraction

The total grip force signal of each signature sample was obtained by 
adding the pre-processed grip force signals of the 32 individual sensors. 
Figure 3 exemplifies a bogus signature sample, the associated 32 pre-
processed grip force signals and the summative total grip force signal.

Two genre of features were extracted from the total grip force 
signals: (1) signature-exclusive features which are extracted only from 
the total grip force signal during signature writing and (2) referenced 
features which represent the closeness of a given writing sample to the 
reference signal of a participant. These signature-exclusive features 
include:

• Mean of the total force signal as a measure of location of the signal 
values

• Maximum of the total force signal as a measure of the grip strength

• nterquartile range of the total force signal as a robust measure of 
kinetic dispersionFigure 1: Data collection instrumentation setup.

Figure 2: The bogus signature. Each participant practiced this signature 
for two weeks prior to the data collection to develop familiarity with the 
signature.
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• Coefficient of variation (CV) of the total force signal as a 
normalized measure of kinetic dispersion. CV is the ratio of the 
standard deviation to the mean of the signal.

• Skewness of the total force signal, which is a measure of asymmetry 
of the signal distribution

• Kurtosis of the total force signal, which is a measure of the 
peakedness of the signal distribution

• Number of zero crossings of the detrended total force signal as a 
crude measure of the frequency content of the signal

• Number of peaks in the total force signal

• Centroid frequency of the power spectral density of the total force 
signal

• Bandwidth of the power spectral density of the total force signal

• Maximum power of the power spectral density of the total force 
signal

• Sub-band power of the total force signal. Since most of the energy 
content was below 5 Hz, the sub-band power was calculated in 5 
frequency bands each with a 1 Hz window size.

• Entropy rate of the total force signal, which is a measure of the 
regularity of the signal

A more detailed explanation of many of these features can be found 
in Lee [32].

For the second group of features, a reference total force signal of 
each participant was first estimated according to the following steps:

Time normalization: The total force signals of all participants were 
resampled as necessary such that all total grip force signals shared a 
common length, which was chosen to be the average length across all 
participants and all signature samples.

Registration: To correct any temporal misalignment among the 
time-normalized total force signals of each participant, the signals 
were subjected to curve registration as described in Chau et al. [33]. 
Figure 4 portrays an example of the total force signals before and after 
registration and the associated mean signals for one of the participants.

The reference signal calculation: The mean total force signal for 
each participant was estimated as the average of the registered total 
force signals across signatures of the given participant. Figure 5 depicts 
the overall mean total force signal based on all 20 participants along 
with the mean total force signals of 2 participants as examples.

The second group of features measures the similarity between the 
reference curve of each participant and all other total force signals 
belonging to that participant (within-participant similarity measure) 
and belonging to other participants (between-participant similarity 
measure). These features were:

• Pearson correlation coefficient (NCC) between two signals, which 
is a measure of the strength of linear dependence (correlation) between 
two signals.

• Root mean square error (RMSE) between two magnitude-
normalized signals (i.e. zero mean and unit standard deviation signals), 
which reflects the distance between two signals.

• Cost of registering two signals, which is the sum-of-squares 
criterion function detailed in Chau et al. [33].

Figure 3: A signature sample, its grip force signals and total grip 
force profile. Top: a signature sample and the associated timing of 
selected points; Middle: the pre-processed grip force signals of the 32 
force sensors; Bottom: the total grip force signal over the course of a 
signature, which is the sum of the signals shown in the middle figure.

Figure 4: Example of total force signals for one participant before (left 
graph) and after (center graph) registration. To facilitate visualization, 
only a subset of total force signals is shown. Pre- and post-registration 
mean total force profiles for the given participant appear in the rightmost 
graph.

Figure 5: Examples of mean total force signals. The solid line shows 
the overall mean total grip force signal based on all participants while each 
dotted line exemplifies the mean total grip force signal of a participant.
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Pattern classification

To ascertain the within-participant consistency of the total force 
signals and the extent of the between participant variability, a binary 
classifier was created for each participant. For the ith classifier, i=1,…, 
20, the true signatures class included the bogus signatures that 
belonged to the ith participant, while the false signatures class entailed 
an equal number of bogus signatures randomly selected from the 
other 19 participants. For each classifier, the inputs were the features 
extracted from the total force signal of each signature and the output 
was a binary output indicating whether the signature sample belonged 
to the ith participant (true sample) or not (false sample). For each 
participant, the mean misclassification rate (MCR) was estimated 
based on ten iterations of 10 fold cross validation. In each iteration of 
the cross validation, a different random set of false signature samples 
were selected.

Several different classifiers were considered including a simple 
linear classifier, the linear discriminant analysis (LDA) classifier [34], 
a probabilistic classifier (Naive Bayes), a nonparametric nonlinear 
classifier (K-nearest neighbor (KNN)) and a parametric nonlinear 
classifier (support vector machine (SVM) with radial bases function 
(RBF)). For each classifier, the mean MCR as well as the percentage of 
false positives (FP) and false negatives (FN) were tabulated based on 
100 folds (10 iterations×10 folds).

Classification was first performed using all 20 extracted features. 
To remove potential feature redundancy and to reduce dimensionality, 
a subset of 9 features was systematically selected according to the 
procedure below.

1. The sample covariance matrix of the features vectors was 
calculated. Six features were excluded due to high inter-feature 
correlations.

2. With the 14 remaining features, weighted sequential feature 
selection (WSFS) [35] was invoked to find the most discriminatory 
set of features in each iteration for each participant. Features were 
ranked based on their individual discriminability. The optimal subset 
of features for each iteration of 10 folds was identified as features that 
surfaced the most frequently while yielding the lowest MCR.

3. To minimize feature space dimensionality and to hone in on 
a uniform set of features across participants, only features that were 
frequently selected across participants were admitted to the final 
feature set. Specifically, 9 features emerged: mean, CV, skewness, 
centroid frequency, bandwidth, entropy rate, sub-band power (2 Hz ≤ 
f<3Hz), NCC and RMSE.

The above analysis was performed with an unordered (i.e., 
randomly selected) set of true samples from each participant. Random 
selection ensured that the training set included samples across sessions. 
Therefore, both training and testing sets likely contained signature 
samples from the same session. To determine the effect of training and 
testing with samples from different sessions on MCR values, the same 
analysis was repeated with sequentially ordered true samples. In this 
latter case, the testing set included samples from sessions that were not 
part of the training set. A Wilcoxon rank sum test was performed for 
each participant to compare the two groups of MCRs.

The effect of reducing the number of samples on classification 
performance was also examined. Subsets of decreasing size, from 100% 
to 10% of the samples available for each participant were considered. 
For each subset, the mean MCR was calculated based on 10 iterations 
of 10 fold cross validation.

Results
Figure 6 presents the average MCRs of the four classifiers using 

all 20 features (unshaded bars) and using 9 selected features (shaded 
bars). On average, 943 (90%) training samples and 105 (10%) testing 
samples were used in each fold of cross validation. Only the SVM 
classifier performance improved with feature selection. By statistically 
comparing the average MCR, FP and FN obtained with the 20-feature 
LDA classifier and the same quantities for classifiers of decreasing 
feature dimension, it was found classification performance is preserved 
down to 9 features (p=0.126, 0.07, and 0.36 respectively). With only 
8 features, FP increased significantly (p=0.044). Likewise, with only 
7 features, MCR was significantly higher (p =0.046). Since the simple 
LDA classifier with all 20 features yielded the best performance overall, 
it will be the focus of the subsequent analyses.

Figure 7 provides a more detailed breakdown of the LDA classifier 
performance across participants, in terms of percentage false positives 
and false negatives. These results arise from considering an unordered 
full set of true samples with all 20 features.

Unordered and ordered sets of true samples yielded similar MCR 
values for all participants (p>0.05; Wilcoxon rank sum) except for 
participant 11 (p=0.0014) where the unordered set yielded a lower 
MCR value.

The effect of reducing the sample size on mean MRC is illustrated 

Figure 6: The means (bars) and standard deviations (error bars) of the 
MCRs of the different classifiers with full (unshaded bars) and reduced 
feature sets (shaded bars).

Figure 7: Performance of the LDA classifier for each participant. The 
percentage of false positives (FP) and false negatives (FN) are shown for 
each participant. The average values across participants are shown as the 
dotted lines with their values on the right side of the figure.
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in Figure 8. This analysis was performed separately for each participant 
and the average MCRs across participants are reported in the figure 
with respect to the number of samples in each fold. Reducing the 
sample size did not significantly increase the error rate (p=0:125; 
robust regression test).

Discussion
This study presents the first investigation into the variability of 

time-evolving grip kinetic profiles of 20 adult participants writing the 
same, well-practiced signature over multiple days and at various times 
each day. The signatures studied herein can be considered free-hand or 
skilled forgeries given the extended practice period [36]. Overall, our 
findings corroborate previous reports that grip kinetics, albeit analyzed 
from a topographic perspective, generally do not differ significantly 
between well-practiced and authentic signatures [37].

A closer examination of Figure 5 reveals some common kinetic 
fluctuations across participants. Generally, the grip force gradually 
increases while writing the first name and sharply declines during the 
completion of the second ’l’. The notable kinetic dip that follows is 
due the cessation in writing as the writer moves the pen horizontally 
to commence the last name. Similar to the first name, the grip force 
gradually increases as the word is written and tails off sharply with the 
writing of the last letter.

Despite these general similarities, the mean total force signals varied 
among writers in terms of their magnitude, their difference between 
words and their fluctuations within each word. Similar interindividual 
differences have been reported in the study of grip kinetics associated 
with golf swings [14]. The between-participant variability in the 
grip kinetic profile is likely attributable to the personalized nature 
of handwriting motor skills [38]. Indeed, early study of handwriting 
kinetics [39] qualitatively reported between-participant variability in 
finger pressure patterns.

Within-participant variations in the total force profile did exist as 
well, as exemplified in Figure 4. This variation included a change in the 
magnitude and shape of the profile over time. Some of the variability 
might be due to grasp adjustments and pen rotations, which were 
observed by the researcher during the data collection and retrospectively, 
through a review of the pictures taken at each session. These changes 
were particularly evident for participant 6 and explain the high MCR 
values for this participant in Figure 7. Grasp adjustments change the 
position and orientation of the sensor array with respect to the hand. 
Since there is some inevitable ’dead space’ between neighbouring 
sensors on the array, grasp adjustments may alter the measurement of 
total force. Other contributors to within-participant force profile variation 
may have included circadian fluctuations in the grip strength and writer 
motivation [38], calibration errors, mental and physical fatigue, as well as 
changes in body and arm posture while writing [40].

Although all 32 sensors were considered in this study, future 
research may consider the potential to classify writers on the basis of 
a smaller subset of sensors. In a previous study [1], it was noted that 
handwriting grip forces are captured by only a small subset of sensors 
around the barrel. Future research may thus consider the judicious 
elimination of uninformative sensors.

In this study, the bogus signature is considered a text-based signature 
since each letter can be identified. A visual inspection of the authentic 
signatures of all 20 participants revealed that all but one participant 
employed a text-based form of signature writing; participant 7 was the 
only one who had a non-text signature where none of the letters could 
be identified. However, the MCR of participant 7 was still within the 
range of MCRs obtained across participants as evident in Figure 7. In a 
future study, it would be interesting to examine if the present findings 
would generalize to non-text writing more broadly.

The classification analysis suggested that even in the presence of 
within-participant variability in the grip kinetic profiles, the between-
participant variations tend to be greater, allowing for inter-participant 
separation. The low MCR with the LDA classifier suggests that the 
features derived from the grip kinetic profiles are in fact linearly 
separable. The lack of difference in MCRs for ordered and unordered 
samples implies that this separability is consistent over time. Finally, 
the inter-participant separation seemed to be intact even if the pool 
of signatures was reduced dramatically, an important consideration 
for signature verification systems [36,41]. Overall, the findings of this 
study support further investigation of grip kinetic profiles associated 
with signature writing as a biometric measure.

Conclusion
In this study, we examined the total grip force profile generated 

while writing multiple iterations of a well-practiced signature by 20 
participants. The algorithmic discrimination between writers based on 
features extracted from the total grip force profile indicated that despite 
intra-participant variability, each participant had a unique grip kinetic 
profile. Further, classification performance was robust to reductions in 
sample size and the temporal ordering of test signatures. Collectively, 
these findings indicate that the grip kinetic profile may be a valuable 
measure for signature verification applications.
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