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Introduction
Heritability is a fundamental concept to quantify the genetics on a 

quantitative trait. Through the random effect model for a quantitative 
trait, locus specific heritability, which is for linkage analysis, is 
estimated after adjusting for polygenic heritability. Heritability has 
been originally developed in animal studies, which have more control 
on environmental effects through the study design. Recent attention to 
quantitative trait analysis has been made in human genetic studies for 
common diseases. Since common diseases are mostly multifactorial, 
there are likely to be multiple genetic an environmenttal factors 
involved in the disease process, and each factor by itself will have limited 
influence on the disease. Thus, one effort to enhance power to detect a 
genetic influence on a common disease is to examine subcomponent 
traits for the disease when the subcomponent traits are considered to be 
closer to the action of a gene. In family studies, analyzing quantitatively 
measured subcomponent traits can be of benefit because they can 
provide genetic information for both affected and unaffected family 
members. However, existing analytic methods have been limited to 
control for non-genetic differences between two family members in the 
analysis, which is more critical in common disease analyses.

In quantitative genetics, the covariance of a trait is described as the 
sum of the covariance of a random genetic effect and the covariance 
of a random environmental effect [1,2]. The genetic variance is the 
variance of a random genetic effect given the correlation of random 
genetic effects between family members. The environmental variance 
is the variance of a random environmental effect given the correlation 
of random environmental effects between family members. While 
the correlation of random genetic effects is the probability of sharing 
genes, which can be determined based on their familial relationship, 
the correlation of random environmental effects is the probability of 
sharing environments between them. In non-human genetics, a proper 
study design can make feasible the estimation of the probability of 
sharing environments on a trait. But in human genetics, especially for 
large family studies including multi-generations, it is not trivial to make 
any reasonable estimation on the probability of sharing environments 
between two family members or the structure for each family.

There has been discussion on the impact of pedigree structure on 
heritability estimation. Mallinckrodt et al. [3] found that there was no 
difference in the precision and accuracy of heritability estimate from 
simulated data for random or fixed pedigree structures. However, [4] 

compared heritability estimates for pulse pressure from three different 
family studies and showed that multi-generation studies produced 
significantly lower heritability estimates than sib-pair studies. Recently, 
[5] revisited this issue using simulated data and concluded that there
is hardly any impact of pedigree structure on heritability estimates.
These contradictory findings can be due to the fact that simulated data
can comply any necessary assumptions such as zero correlation of
environmental effects between two family members for all families but
not real data.

To reduce the bias due to non-genetic effects, one strategy would 
be to conduct analysis adjusted for environmental covariates. Issues 
in environmental covariate adjustments have been discussed in the 
setting of quantitative trait linkage analysis. As compared in [6], 
individual specific covariates are included in the analysis to reduce the 
residual error of the mean for the individual levels, while pair specific 
covariates are to allow or adjust for pair specific differences between 
pairs on the covariance, which is critical in quantitative genetics. 
Although both variance component model and regression approach 
can handle pair specific covariates, regression approach provides more 
exibility to incorporate pair specific covariates (e.g.,age difference for a 
pair) in the analysis. In addition, [7] did simulation study for variance 
component models incorporating covariates in the means, covariance 
and residuals, under the normality assumption, and concluded that 
potentially important environmental covariates should be adjusted in 
the absence of a correlation between the covariates and the locus.

In this paper, we propose a new analytic method to estimate 
heritability for both single and multiple trait cases. When phenotypic 
similarity is translated into the covariance, heritability is commonly 
estimated as the ratio between genetic variance estimate and total 
phenotypic variance estimate. Unlike existing approaches, the 
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proposed method estimates the heritability itself as a regression 
parameter, without estimating both variances. For single trait analysis, 
we implement the efficient three generalized estimating equations 
(GEEs) proposed by [8]; for multiple trait analysis, the method for 
multivariate familial correlation estimation proposed by [9]. While 
this new approach shares advantages using regression approaches 
under the scheme of GEE, it also allows us to handle various types of 
relative pairs under one model and all parameters at the same stage, 
without requiring the normality assumption. The performances of the 
proposed model are compared with those using variance component 
model through simulations and carotid Intima Media Thickness (IMT) 
analysis from Northern Manhattan Family Study (NOMAS).

Materials and Methods
Random effect model for a quantitative trait

One’s level of a quantitative trait can be viewed as a combination of 
genetic and environmental effects. With the conventional assumption 
that genetic and environmental effects are independent, a model for the 
trait of interest Yij from ith family and jth member is written as follows:

 Yij = µij + gij + εij       				                      (1)

where µij is the mean of the trait, while gij and εij are the random genetic 
and environmental effects, respectively.

Considering the nature of the genetic effect gij, the model (1) 
becomes as follows:

 Yij = µij + Aij + dij + εij                           		                (2)

where Aij is the additive genetic effect whose variance is 2σ A , dij is the 
dominance effect whose variance is 2σ d  , and εij  is the environmental 
effect whose variance is 2σ e . Note that epistasis was not considered 
in this model. From the independence assumption, total phenotypic 
variance Var(Yij) = σ2= 

2 2 2 ,σ σ σ+ +A d e  and for j ≠ k,

2 2 2

( , ) ( , ) ( , ) ( , )

                   = 2

ε ε
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ij ik ij ik ij ik ij ik

jk A ij d ijk e

Cov Y Y Cov A A Cov d d Cov

                         
where 2θjk = Corr(Aij, Aik), Δjk= Corr(dij, dik), and gijk= Corr(εij, 

εik). Note that the θjk and Δjk are determined as a probability of 
sharing additiveIBD allele and a probability of sharing dominance 
IBD allele, which can be expected from the familial relationship of j 
and k, respectively, irrespective of i. Two alleles (one each from two 
individuals) are said to be IBD (identity by descent) when they are in 
the same form and descended from the same ancestral allele. Table 1 
shows the θjk and Δjk in each familial relationship.

Proposed methods

The correlation between two levels from a pair is expressed as
2 22

2 2 2( , ) 2 σ σσq g
σ σ σ

= + ∆ +d eA
ij ik jk jk ijkCorr Y Y                                                (3)

where the 
2

2

σ
σ

A  is referred to as `(narrow sense) heritability’ in the 

literature, which measures the additive genetic effect on a quantitative 

trait. The poly-genic heritability is conventionally defined as the 
2

2

σ
σ

A  
after assuming gijk = 0.

To estimate the heritability, existing methods estimate the total 
variance σ2 and 2σ A , given the 2θjk and Δjk for a pair (j, k) in the ith family. 
Likelihood function assuming multivariate normal distribution of the 
trait vector of interest from members of a family is commonly used 

in the analysis of extended families. The inference for the heritability 
estimator under variance component approach has been well 
established based on restricted maximum likelihood under the general 
framework by [10,11]. In addition, Ekstrfm [5] provided explicit 
expression of the asymptotic variance of each variance estimator.

We propose an alternative approach to interpret the heritability 
from the phenotypic correlation. Single trait analyses may employ 
Pearson’s correlation, and multiple trait analyses may employ 
maximum canonical correlation. By interpreting the correlation for a 
pair (j, k) in the ith family as a regression model 2θjk b1+ Δjk b2+ bijkb3, 
the inference on the regression parameter b1 explains the heritability of 
the trait, 

2

2

σ
σ

A  . To model Pearson’s correlation, we employed the 3GEEs 

by [8] and a joint estimating equation by [9] for maximum canonical 
correlation.

Our proposed approach differs from the existing approach in three 
folds: first, we do not assume normality and use an estimating equation 
approach rather than likelihood approach, which makes flexible to 
incorporate non- genetic share between two individuals; second, we 
parameterize in such a way that the ratio of 2σ A to σ2 can be directly 
estimated, rather than estimating each variance component separate; 
lastly, multiple trait analysis can be utilized to examine a pleiotropy, 
which occurs when a single gene influences multiple traits.

Results
Simulation study

Simulation studies compared the performance of the proposed 
approach with the standard analysis implementing restricted maximum 
likelihood estimation for single trait cases. Bias and efficiency were 
compared in two situations when the trait does not follow the normality 
and when non-zero correlation of environmental effects exists between 
two family members. In each situation, we generated 100 simulated 
data including 100 families with three sib-pairs. For siblings, the 
correlation of additive genetic effects, 2θjk, is 0.5, while the correlation 
of dominant genetic effects, Δjk, is 0.25. For the multivariate normal, 
t or gamma distribution of a trait, when true polygenic heritabilities 
were 0.4, 0.6 and 0.8, the bias and variances of each heritability estimate 
were compared by varying the correlation of environmental effects 
for each pair from 0, 0.3, 0.6 to 0.9. That is, the data generation with 
zero correlation of environmental effects complies the defnition of 
the conventional heritability. Table 2 summarizes total variances and 
correlations implemented in this simulation.

First, we examined the impact of a positive environmental 
correlation on current restricted maximum likelihood approach for 
the conventional heritability assuming  gijk = 0. Table 3 presents the 
simulation results. As expected, the likelihood approach performed the 
best when the true correlation of environmental effect was zero and 
the trait followed the normal distribution. The bias got greater as the 

Degree Relationship 2qjk  ∆jk

1 Parent-offspring 1/2 0
1 Full sib 1/2 1/4
2 Grandparent-grandoffspring 1/4 0
2 Half sibs 1/4 0
2 Uncle-nephews 1/4 0
3 First cousins 1/8 0

Table 1: P(IBD allele share) expected from the familial relationship.
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true correlation of environmental effect was greater, regardless of the 
size of true heritability or distribution. Incorporating the correlation 
of environmental effects into the likelihood ap-proach and proposed 
approach, we compared their performances when the true non-zero 
correlation of environmental effects were known for families. Table 4 
presents the results for the heritability estimates including non-zero 
correlation of environmental effects in the model. We found that the 
likelihood method produces better results with the estimates of the 
correlation of environmental effects than with the specification of the 
true correlation for the simulated data (results are not shown). Thus, 
we present the simulation results for the likelihood approach when the 
correlation of environmental effects was estimated from each simulated 
data with the correct specification of the structure for each family, while 
the proposed method implemented the correct specification of the 
correlation of environmental effects. Including non-zero correlation 
parameter of environmental effect in the model reduced the bias in 
both approaches, especially when the true correlation of environmental 
effects was high, as expected (Table 3 vs. 4). The likelihood approach 
performed better when the data were generated from the normal 
distribution, but the proposed method showed greater improvement 
as the data deviated more from the normality. However, the likelihood 
approach requires the correlation of environmental effects to be 
estimable or the number of family members to be the same. The 
variance estimates of the proposed model estimates were more efficient 
in terms of being close to the simulation variances. The performance 
of the proposed method was stable in most of the cases considered for 
simulations.

Data analysis

Sacco et al. [12] presented heritability and linkage analysis for eight 
carotid IMT measures from 1390 subjects and 100 Caribbean Hispanic 
families. The families were selected when probands from the NOMAS 
were high-risk Caribbean Hispanic members de_ned by the following 
criteria: (1) reporting a sibling with a history of myocardial infarction 
or stroke; or (2) having 2 of 3 quantitative risk phenotypes (maximal 
carotid plaque thickness, left ventricular mass, or homocysteine level 
above the 75th percentile in the NOMAS cohort). Families were 
enrolled if the proband was able to provide a family history, obtain 
the family members permission for the research staff to contact them, 
and had at least 3 first-degree relatives able to participate. Although the 

proband was identified in Northern Manhattan, they enrolled family 
members in New York at Columbia University and in the Dominican 
Republic at the Clinicas Corazones Unidos in Santo Domingo. All 
subjects provided informed consent, and the study was approved by 
the Institutional Review Boards of Columbia University, University 
of Miami, the National Bioethics Committee, and the Independent 
Ethics Committee of Instituto Oncologico Regional del Cibao in the 
Dominican Republic. See [13] for the details of study design.

Carotid IMT were measured by high-resolution B-mode ultrasound 
and expressed as the mean and mean of the maximum. Ultrasound 
measures of carotid IMT have been demonstrated to be valid measures 
of pathologically defined atherosclerosis, highly reproducible, 
associated with vascular risk factors, and predictive of stroke and 
myocardial infarction. The carotid IMT protocols yield measurements 
of the distance between lumen-intima and media-adventitia ultrasound 
echoes, from which the IMT and arterial diameter are derived for the 
3 carotid segments. The carotid segments were defined as follows: (1) 
near and far wall of the segment extending from 10 to 20 mm proximal 
to the tip of the flow divider into the common carotid artery (CCA); 
(2) near and far wall of the carotid bifurcation beginning at the tip of 
the flow divider and extending 10 mm proximal to the ow divider tip 
(BIF); and (3) near and far wall of the proximal 10 mm of the internal 
carotid artery (ICA). Total IMT was calculated as a mean composite 
measure of the means of the near and the far wall IMT of all carotid 
sites (IMTx), and the maximum of the near and the far wall IMT of all 
carotid sites (IMTm). Carotid segment-specific IMT phenotypes were 
also examined (BIFx, BIFm, CCAx, CCAm, ICAx, ICAm).

We analyzed the data used for [12] to examine the performance 
of our proposed method. We first estimated the heritability assuming 
zero environmental correlations in the proposed model to compare the 
results from the SOLAR, which implements the restricted maximum 
likelihood approach. Our method is to interpret the relationship 
between phenotypic correlation and sharing genes as the heritability. 
Assuming gijk = 0, the

22

2 2( , ) 2 σσq
σ σ

= + ∆ dA
ij ik jk jkCorr Y Y   

Then, the estimate of  
2

2

σ
σ

A .

which is the heritability, would be roughly the sum of phenotypic 
correlation estimates for each degree of relatives over the sum of  2θjk 
for each degree of relatives. For example, as for the trait IMTx, the 
(2θjk, Correlation of the residual IMTx from the mean model) for each 
degree of relative pairs would be (0.5,0.406) for Parent-Offspring pairs, 
(0.5,0.379) for sib-pairs, (0.25, 0.294) for second degree, (0.125, 0.121) 
for third degree, (0.0625, 0.105) for fourth degree. Thus, the estimate 

of 
2

2

σ
σ

A  is 0.908 as the sum of phenotypic correlations is 1.305 and the 

sum of 2 θjk is 1.4375. As shown in Table 5, the heritability from the 
proposed model varied from 0.28 to 0.91, while the heritability reported 
in [12] was from 0.41 to 0.65, after adjusting for the same confounders 
in the mean model for each carotid IMT. Although two estimates were 
quite different, the trend (small to large) was consistent, as well as the 
statistical significance.

In this study, the mean family size was 14 (standard deviation 
(SD)=8); for family member pairs, age difference varied from 0 to 
82 years (mean=20, SD=14, first quartile(Q1)=7, median(Q2)=18 
and third quartile(Q3)=29), and BMI difference was from 0 to 32.7 
(mean=6.0, SD=5.0, Q1=2.2, Q2=4.7 and Q3=8.4). A common practice 
is to analyze the residuals after adjusting for potential environmental 

Heritability Covariance Genetic Environmental Total*

Additive        Dominant

0.4 Variance 40 30 30 100

Correlation 0.5 

0.5 

0.5 

0.5

0.25

0.25 

0.25 

0.25 

0 

0.3 

0.6 

0.9 

0.275

0.365

0.455

0.545

0.6 Variance 60 10 30 100

Correlation 0.5 

0.5 

0.5 

0.25 

0.25 

0.25 

0 

0.3 

0.6 

0.325

0.415

0.505

0.8 Variance 80 5 15 100

Correlation 0.5 

0.5 

0.5 

0.5 

0.25 

0.25 

0.25 

0.25

0 

0.3

0.6 

0.9 

0.4125

0.4575

0.5025

0.5475

Table 2: Specified correlation and variance of each eect for simulation study.
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confounders in the mean model. However, it is still not clear if the 
mean model only adjustment is sufficient to correct for the bias when 
the covariance is modeled. Table 6 shows the raw correlation and the 
residual correlation from the mean model for CCAx, BIFx and ICAx 
stratified by the quartiles of age or BMI difference for pairs. The raw 
correlations became smaller when age difference or BMI difference was 
greater, regardless of sharing genes. Residual correlations stratified by 
the quartiles of age difference does not show the trend anymore, but 
those stratified by BMI difference seem to retain the trend.

We applied our proposed methods including the intercept in 
the model. For three different mean measures of carotid segments, 
CCAx, BIFx and ICAx, we studied the heritability of each trait and the 
heritability of three measures together. Table 7 presents the single trait 

analysis for each CCAx, BIFx and ICAx. The 
2

2

σ
σ

A  from Model 1 implies 

the heritability after allowing a common correlation for all relative 
pairs if they did not share any genes. For those traits, the common non-
genetic correlation for relative pairs was not significantly different from 
zero, which may imply a strong genetic information on them (p=0.287, 
0.522 and 0.522, respectively). The adjusted heritabilities from Model 

1 were 0.581 for CCAx, 0.774 for BIFx and 0.375 for ICAx. The 
2

2

σ
σ

A  

from Model 2 implies the heritability if there was no difference in age 
or BMI in relative pairs, after allowing a common correlation. In each 
carotid IMT measure, the age difference and BMI difference were not 
signigicantly different from 0, although p-values were close to 0.05 
in some of situations. The adjusted heritabilities from Model 2 were 
0.540 for CCAx, 0.732 for BIFx and 0.339 for ICAx. Table 8 presents 

Normal T Gamma
h2 ρe Bias ASV EMP Bias ASV EMP Bias ASV EMP
0.4  0 0.0023 0.0047 0.0025 0.0178 0.0258 0.0600 -0.0184 0.0230 0.0128
0.4 0.3 0.1458 0.0061 0.0024 0.0931 0.0292 0.0496 0.1353 0.0303 0.0134
0.4 0.6 0.2892 0.0077 0.0022 0.2287 0.0365 0.0441 0.2814 0.0384 0.0152
0.4 0.9 0.4326 0.0095 0.0019 0.3906 0.0463 0.0338 0.4162 0.0469 0.0104
0.6 00.0 0.0076 0.0094 0.0360 0.0007 0.0314 0.0498 -0.0227 0.0296 0.0127
0.6 0.6 0.2876 0.0094 0.0018 0.2695 0.0466 0.0360 0.2735 0.0466 0.0121
0.6 0.9 0.4311 0.0115 0.0014 0.4513 0.0595 0.0235 0.4277 0.0576 0.0072
0.8 0 -0.0005 0.0080 0.0020 0.0172 0.0412 0.0387 -0.0061 0.0397 0.0122
0.8 0.3 0.0712 0.0088 0.0019 0.0684 0.0441 0.0354 0.0639 0.0440 0.0129
0.8 0.6 0.1430 0.0098 0.0017 0.1475 0.0491 0.0341 0.1306 0.0483 0.0104
0.8 0.9 0.2147 0.0108 0.0015 0.2044 0.0531 0.0327 0.2043 0.0534 0.0081

NOTE: h2: heritability; ρe: correlation of environmental eects; REML: Restricted maximum likelihood estimates; correlation regression: correlation regression estimates; 
Bias: estimate of h2-h2; ASV: Asymptotic variance of REML; EMP: Simulation variance. 

Table 3: Simulation results for heritability assuming zero non-genetic correlations for relative pairs using REML: Multivariate normal, T and Gamma distribution.

REML correlation 
regression

Distribution h2 ρe Bias ASV EMP Bias SAN EMP

Normal
0.4 
0.4 
0.4 

0.3 
0.6
0.9

-0.0003
-0.0003
-0.0004

0.0000 
0.0000 
0.0000

0.0001 
0.0001
0.0001

0.0100
0.0045
0.0018

0.0061 
0.0020 
0.0006

0.0062
0.0020
0.0006

0.6 
0.6
0.6 

0.3
0.6 
0.9 

0.0003
0.0004 
0.0005 

0.0000
0.0000 
0.0001 

0.0001
0.0001 
0.0001 

0.0087
0.0037
0.0691 

0.0058 
0.0018 
0.0014 

0.0059
0.0019
0.001

0.8 
0.8 
0.8 

0.3
0.6
0.9

0.0010
0.0011
0.0012

0.0004
0.0004
0.0004

0.0008
0.0009
0.0010

0.0075 
0.0037
0.0018

0.0054
0.0018 
0.0006

0.0056
0.0019
0.0006

0.4 
0.4 
0.4 

0.3
0.6
0.9

-0.0175 
-0.0166
-0.0127

0.0001 
0.0001
0.0001

0.0016
0.0013
0.0016

-0.0066
-0.0273
-0.0066

0.0161
0.0057
0.0018

0.0342
0.0098
0.0039

0.6 
0.6 
0.6 

0.3 
0.6
0.9

0.0202
0.0185
0.0225

0.0001
0.0001
0.0001

0.0010
0.0012
0.0014

0.0106
-0.0123
0.0610

0.0158
0.0055
0.0042 

0.0295
0.0112
0.0078

0.8 
0.8 
0.8 

0.3
0.6
0.9

0.0482
0.0446
0.0638

0.0005
0.0005
0.0006

0.0111
0.0121
0.0112

-0.0447
-0.0234
0.0016

0.0159
0.0049
0.0017

0.0015

Gamma
0.4
0.4 
0.4 

0.3
0.6
0.9

0.2012 
0.1977
0.1921

0.0000 
0.0000
0.0000

0.0000
0.0000
0.0000

-0.0066
-0.0030 
-0.0043

0.0076
0.0025
0.0007

0.0077
0.0031
0.0008

0.6 
0.6
0.6 

0.3 
0.6 
0.9

0.2026
0.1993
0.1948

0.0001
0.0001
0.0001

0.0003
0.0003
0.0003

-0.0067
-0.0070
0.0643

0.0071 
0.0023
0.0018 

0.0080
0.0028
0.0018

0.8 
0.8 
0.8 

0.3
0.6
0.9

0.1015
0.1022
0.1007

0.0002
0.0002
0.0003

0.0007
0.0007
0.0009

-0.0068
-0.0069
-0.003

0.0068
0.0022
7 0.0007 

0.0087
0.0025
0.0008

SAN: Sandwich variance estimate; Others are same with the previous table. 

Table 4: Simulation results for heritability estimation with non-zero environmental correlation parameter: Multivariate normal, T and Gamma distribution.
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estimating equations without requiring normality assumption. In 
conjunction with linkage analysis, there have been a number of new 
quantitative trait analysis methods developed in extended family 
design to employ the GEE, regression based statistics or score statistics 
to be robust to the normality assumption [14-17]. However, to our 
knowledge, none of the methods estimate the heritability itself. By 
interpreting the heritability as a regression parameter under the GEE 
framework, the proposed approach has the following advantages: 1) 
exibility to model the genetic and non-genetic differences between two 
family members; 2) not requiring the normality assumption on the 
trait of interest; 3) simplicity to express the heritability adjusted for 
pair specific non-genetic factors; 4) robust estimation of the variance of 
the heritability estimate; 5) simplified inference as discussed in [18].We 
also extended our approach to accommodate multiple trait heritability 
analysis. Although [19] discussed multiple trait analysis using variance 
component models, there is no analytic method available for multiple 
trait analysis using correlations from multi-generation families.

Simulation results showed that there was improvement using the 
proposed method when true heritability was high on the trait of interest 
or when the trait does not follow the normality. The likelihood approach 
increases the bias and greatly underestimate the actual variance when the 
model is misspecified. However, when the trait follows the normality, 
the likelihood approach performed better than the proposed method. 
The model (2) has been extended for multipoint quantitative trait 
linkage analysis [20]. In that context, zero environmental correlation 
is often assumed. For the heritability estimation assuming zero 
environmental correlation, the biases from both approaches were not 
negligible when the environmental correlation was high as expected, 
which made both approaches inaccurate (Results were presented for 
the likelihood approach only). Since zero environmental correlation 
is very unlikely true for all relative pairs, it is desirable to interpret 
the heritability adjusted for non-zero correlation of environmental 
effects in the model to measure the genetics on a quantitative trait. 
The proposed methods provide a direct interpretation for the adjusted 
heritability from the model including pair specific genetic and 
non-genetic effects in the analysis. Data analysis implemented the 
heritability adjusted for a common non-genetic correlation for all pairs 
and pair specific differences in the model. Non-genetic correlations, 
which is an intercept in the correlation regression model, were weak 
for the three carotid IMT measures (CCAx, BIFx and ICAx) in single 
trait analysis. In single trait analysis, those differences in age or BMI 
were not significant, but age difference was significantly different from 
zero in multiple trait analysis. Regardless, both analyses showed strong 
genetic components in them.

REML using SOLAR correlation regression
h2±SE1 p h2±SE2 p

IMTx 0.65±0.05 <0.0001 0.91±0.02 <0.0001
BIFx 0.58±0.05                        <0.0001 0.86±0.02                       <0.0001
ICAx 0.47±0.05                       <0.000 1 0.45±0.01                        <0.0001
CCAx 0.56±0.05                        <0.0001 0.73±0.01                        <0.0001
IMTm 0.62±0.05                        <0.0001 0.75±0.01                        <0.0001
BIFm 0.51±0.05                        <0.0001 0.63±0.01                        <0.0001
ICAm 0.41±0.06                       <0.0001 0.28±0.01                           0.002
CCAm 0.48±0.05                        <0.0001 0.54±0.01                       <0.0001

h2: heritability; REML: Restricted maximum likelihood estimates; correlation regres-
sion: correlation estimates from Generalized estimating equation; SE1: standard 
error from SOLAR: SE2: standard error using correlation regression; p: p-value. 

Table 5: Conventional heritability estimates for carotid Intima-Media Thickness 
(IMT) to be comparable with the results using SOLAR.

CCAx BIFx ICAx
Raw Residual Raw Residual Raw Residual

Overall 0.245 0.194 0.257 0.223 0.168 0.141

Age difference

<Q1
Q1-Q2
Q2-Q3
≥Q3

0.555
0.406
0.288
0.224

0.223
0.132
0.189
0.245

0.286
0.193
0.169
0.152

0.143
0.118
0.160
0.150

0.490
0.372
0.336
0.257

0.207
0.175
0.292
0.227

BMI Difference

<Q1 
Q1-Q2
Q2-Q3
≥Q3 

0.298 
0.245
0.214
0.207

0.240 
0.208
0.171
0.156

0.241 
0.179
0.171
0.079

0.202 
0.137
0.127
0.096

0.312 
0.259 
0.243
0.201

0.267
0.225
0.217
0.182

Q1: rst quartile; Q2: Median; Q3: third quartile; Raw: measured value; Residual: 
residual from the mean model. 

Table 6: Correlation of carotid Intima-Media Thickness (IMT) stratied by age dier-
ence and BMI dierence quartiles.

the multiple trait analysis for CCAx, BIFx and ICAx, simultaneously. 
We estimated the three trait heritability for CCAx, BIFx and ICAx 
to examine if there could be a common gene effect on those three 
measures. The multiple trait heritability from Model 1 was 0.738 and 
0.784 from Model 2. Unlike the single trait analysis, the size became 
greater in Model 2 as the age difference was significantly different from 
zero. In conclusion, all of those three traits showed a strong genetic 
effect on them.

Discussion
In this paper, we proposed new heritability estimation methods 

implementing regression models for correlation. Unlike existing 
methods that estimate each variance component, the proposed 
approach estimates the heritability as a regression parameter through 

Model
CCAx BIFx ICAx

PE SE p PE SE p PE SE p

Corr Model1

Int 
2

2
Aσ

σ 2

2
dσ

σ

0.037

0.581

0.389

0.001

0.019
0.011

0.287

0.000
0.000 

0.023

0.774
0.191

0.001

0.017
0.011

0.522

0.000
0.073

0.022

0.375
0.549

0.001

0.010
0.007

0.522

0.000
0.000

Model2

Int 
2

2
Aσ

σ 2

2
dσ

σ

0.034

0.540

0.440

0.002

0.018
0.010

0.441

0.000
0.000

0.033

0.732
0.235

0.003

0.017
0.013

0.560

0.000
0.043

0.036

0.339
0.578

0.002

0.011
0.009

0.452

0.001
0.000

Dage
dbmi 

0.025
-0.019

0.000
0.000

0.054
0.235

0.027
-0.031

0.000
0.000

0.065
0.048

0.021
-0.029

0.000
0.000

0.157
0.064

PE: parameter estimate; SE: standard error from the sandwich variance estimate; p: p-value; Model1: unadjusted for pair specic age and BMI dierences; 
Model2: adjusted for pair specic age and BMI dierences; dage: age dierence; dbmi: BMI dierence 

Table 7: Heritability estimates for CCAx, BIFx and ICAx using the proposed method: Single trait analysis
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Current paper is focused on polygenic heritability, but locus specific 
heritability, which uses genotypes, can be a direct extension from this 
model. This new regression approach may reduce the bias resulting 
from not accounting for environmental effects in quantitative genetics 
and may increase the power to locate genes on quantitative traits. It 
is also well known that the marginal approach can produce negative 
variance component estimates. In likelihood approach, a hierarchical 
model can accommodate to have a positive variance estimate. Our 
approach can also produce a negative heritability estimate, but a 
transformation for the regression parameter, such as logit, can range 
the heritability estimate from 0 to 1.
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