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Introduction

Fifteen years after highly active antiretroviral therapy (HAART) 
became the standard of care in HIV infection, a few issues regarding 
the immunological effects of such therapy have been clarified, but 
still many points remain incompletely understood. Thus, we have 
learnt that the use of a combination of potent antiviral drugs leads to 
a reconstitution of the immune system, which in the short- and in the 
mid-term is sufficient to radically increase the life expectancy and to 
markedly reduce the incidence of opportunistic events [1]. However, a 
non-negligible proportion of patients do not achieve a significant gain 
of CD4+ cell count, which raises concerns on the risk of AIDS-related 
and non-AIDS related events in this setting, particularly in the long-
term [2]. In addition, HIV-infection causes a chronic hyperactivation 
of the immune system, which may have an impact on the evolution of 
disorders with an inflammatory basis, as liver fibrosis or atherogenesis. 
On the other hand, a number of immunological markers, that may 
be used to assess to what extent the immune system is reconstituted, 
have been developed in the last few years, although their potential for 
being embodied into the routine clinical practice is not well-defined. 
Finally a new family of antiretroviral drugs, the CCR5 antagonists, 
has been incorporated into the available armamentarium against HIV. 
These drugs may inhibit the joining between chemokines and CCR5, 
having, therefore, immunomodulatory and antiinflammatory effects 
[3]. Furthermore, therapy with Maraviroc (Selzentry™, ViiV Helthcare) 
leads to greater and faster CD4+ cell gain [4,5]. These additional 
benefits on immune reconstitution could open new prospects in the 
therapy of HIV infection. 

The purpose of this article is to review the potential role of new 
markers in measuring the immune response to HAART, the mechanism 
and clinical implications of failure to achieve immune reconstitution 
despite virological control, the impact that immune damage associated 
to HIV infection may have on the progression of liver fibrosis and 
atherosclerosis and the role that CCR5 antagonists may play in 
improving the immunological response to HAART.
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Abstract
Incomplete immune reconstitution and persistent immune system hyperactivation in spite of highly active 

antiretroviral therapy continue to be a challenge. Both facts may lead to an increased risk for AIDS-defining and non 
AIDS-defining clinical conditions and may also promote atherogenesis and liver fibrogenesis in HIV and hepatitis 
C virus-coinfected patients. In this article, the use of new markers to assess immune reconstitution and immune 
activation and the incidence and clinical consequences of immunediscordant response to antiretroviral therapy 
are addressed. Likewise, the impact of immune dysfunction on atherogenesis and liver fibrogenesis are reviewed. 
Finally, it is discussed whether therapy with drugs belonging to the family of CCR5 inhibitors may provide additional 
immunological benefit in HIV-infected patients.

Immunological markers with potential clinical usefulness

Destruction of CD4+ lymphocytes is the key pathogenic fact of HIV 
infection. CD4+ cell depletion initiates at an early stage of infection and 
activated CD4+ cells, mainly those located in the mucosa-associated 
lymphoid tissue, represent the preferential target of HIV in the acute 
and chronic phase of infection [6]. Both direct cytopathic effect of 
infected CD4+ lymphocytes [7] and apoptosis-mediated mechanisms 
are involved in CD4+ destruction [8,9]. Because activated cells are 
preferential targets for HIV infection and replication, HIV specific-
CD4+ lymphocytes, which become activated by viral antigens, are 
preferentially killed by the virus [10]. This fact shortens the life span 
of HIV-specific CD4+ T cells in vivo and decreases the capacity of 
the immune system to recognize and destroy HIV-infected cells [11]. 
Furthermore, once HLA-restricted immune responses are triggered, 
infected CD4+ lymphocytes become targets that are recognized 
and killed by HIV-specific CD8+ lymphocytes [12]. Because CD4+ 
lymphocytes play a central role in the regulation and activation of 
the immune system [13], their destruction by HIV through different 
mechanisms has a profound impact in the differentiation and function 
of other lymphocyte subsets.

In addition to CD4 depletion, recent results show the crucial role of 
continuous immune activation in the pathogenesis of AIDS [14]. In the 
chronic phase of infection, HIV establishes a vicious cycle that in turn 
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increases the activation of the immune system by different mechanisms. 
On the one hand, the destruction of gut-associated lymphoid tissue 
by HIV increases bacterial translocation, through which bacterial 
superantigens and wall products activate systemic lymphocytes at 
multiple levels [15]. On the other hand, antigenemia, due to reactivation 
of endogenous viruses, can also result in broad activation of T-cell 
response, all these processes also facilitating the infection of activated 
CD4+ lymphocytes [16]. Chronic activation of the immune system 
creates a constant turnover of the system itself that leads to burnout and 
early senescence of the system. The final result is not only a quantitative 
change in the CD4+ cell destruction, but malfunction due to poor final 
differentiation and profound disruption of lymphocyte homeostasis 
[14]. Increased oxidative stress in non-infected CD4+ cells induced by 
HIV is an additional mechanism involved in CD4+ cell depletion [17].

Determination of peripheral blood CD4+ levels is the main 
monitoring tool to assess the prognosis of the patient, to indicate 
HAART initiation and to evaluate the degree of immune reconstitution 
following treatment. Serum markers such as β-2-microglobulin, 
neopterin or soluble IL2-receptor had little additional predictive 
power beyond CD4+ cell counts [18]. Besides, classical phenotypic 
markers of lymphocytic activation such as CD25, DR, CD69, CD38 or 
soluble cytokines have been proposed as prognostic markers in HIV 
infection [19,20]. However, many of them require in vitro culture and 
activation of lymphocytes, making these tests unrealistic to be used in 
the routine follow-up of patients [21,22]. In addition, classical markers 
of lymphocyte activation are relatively nonspecific and may increase 
due to other infections [23]. Therefore, these parameters are interesting 
for investigational studies, but of low value in the follow-up of HIV-
infected patients in the clinical setting. Specifically, these markers, 
previously analyzed in studies on HIV progression, have been found to 
be useful in HIV vaccine trials [24].

Recent findings on the mechanisms of HIV pathogenesis point 
to the potential utility of several immune markers in the near future. 
First, CD4+ lymphocytes displaying a central memory phenotype, 
characterized by the expression of the CCR7 receptor together with 
CD45RA- CD45RO+ CD62L-, has been reported to be preferentially 
infected by HIV [24]. Second, as a consequence of the persistent immune 
activation, a premature immune senescence has been described for 
both CD8+ and CD4+ subpopulations [25]. These cells have reached 
a terminal differentiation and express the CD57 molecule on their 
membrane [26], in contrast with CD28+ cells that maintain capacity 
to activate and to respond to appropriate antigens. Finally, the balance 
between two different lymphocyte subpopulations, Th17+ and TReg has 
been found to be relevant in HIV infection [27]. Th17+ lymphocytes are 
preferentially located in the GALT system and display a strong antiviral 
activity, which is associated with lack of progression to AIDS [28]. 
These cells produce IL17 and IL23 and express the chemokine receptor 
CCR6 and the surface marker CD161. Because interleukin-17 serves 
to maintain the integrity of the mucosal barrier, loss of Th17+ cells 
may lead to an increase in microbial translocation. TReg lymphocytes 
have the capacity to inhibit the activation and proliferation of other 
lymphocyte subtypes, including Th17+ cell through the production of 
TGF-β. This cell subtype displays a CD4+CD25+ FOXP3+ phenotype 
[29] and its role in HIV infection remains controversial. Consequentely,
phenotyping of different subsets of memory cells (CCR7), markers of
immune senescence (CD28, CD57) and Th17 (CD161) lymphocytes
could provide a more detailed picture on the degree of health or damage
of the immune system. If the relevance of these markers to assess the
immune status of HIV-infected patients is confirmed in large series
of cases, they could be particularly useful in the decision of treatment
initiation in HIV-infected individuals.

HAART-associated immune recovery dynamics

During the first 2 weeks of HAART, there is a quick drop in the 
plasma HIV viral load following the inhibition of viral replication in 
productively infected cells. This drop is associated with an increase in the 
CD4+ lymphocyte count in three different phases [30]. Initially, there is 
an increase in CD4+ and CD8+ memory cells, due to redistribution of 
lymphocytes from the lymph nodes. This phase lasts from 2 to 4 weeks 
and it is followed by a decrease in the immunological activation, along 
with a diminution of CD4+ and CD8+ cells expressing CD38+ or HLA-
DR antigens, both markers of immunological activation. Finally, after 
4 or 6 months of therapy, there is an increase in the naïve CD4+ cells 
which were absent at the beginning of the treatment. In parallel with 
that expansion, there is a recovery in the functionality of the immune 
system, and it has been proven that there is a recuperation of the 
lymphoproliferative responses [31] and in the repertoire of the T-cell 
receptor [32], along with a restoration of the responses to different 
antigens, as the tetanus toxoid [33]. Although this restoration decreases 
the incidence of opportunistic infections and the mortality associated 
with AIDS, it is unclear how much immune reconstitution is necessary. 
Some recent works suggest that until the CD4+ cell counts reach 500 
cells/µL for at least 5-7 years, mortality does not match that of HIV 
non-infected population [34].

Immunodiscordant response

A number of subjects starting HAART show a discrepancy between 
plasma viral load response and the CD4+ T-cell recovery. Thus, CD4+ 
cell count can rise despite persistently detectable plasma viral load 
(virological nonresponders), or, conversely, it may not increase despite 
full plasma viral load suppression (immunological nonresponders). 
There are controversies about the definition of immunological failure. 
Some authors consider that a CD4+ cell count below 200 cells/µL after 1 
year of effective antiretroviral therapy would identify patients with lack 
of immune recovery. In addition, other studies have defined immune 
failure as lack of 50% of increase over the baseline level or a CD4+ 
cell gain lower than 50-100 cells/µL within 6 months after starting 
HAART, since lack of response can be detected earlier using this 
time limit. However, recent guidelines also include as immunological 
non-responders those patients who continue below 350-500 cells/µL 
after 3-5 years of therapy, as these patients could have a higher risk of 
progression and death [35]. Immunodiscordant response to HAART, 
defined as failure to recover CD4+ T cell count above 350-500 cells/
µL, has been observed in up to 30% of virologically suppressed HIV-
infected individuals [2].

Defective immune reconstitution may depend on several factors, 
including previous therapeutic failure, duration of antiretroviral 
therapy, low CD4+ T-cell count at the initiation of HAART, advanced 
stage of disease, low adherence to HAART, and previous treatment 
interruption. However, the nadir CD4+ cell count, a marker of the 
damage that HIV replication has induced in these patients, is the most 
consistent factor associated with the lack of recovery, as shown in 
several large cohort studies [36]. 

Abundant work aimed at identifying the mechanisms that underlie 
the lack of immune recovery has shown an accumulation of T cells in 
late differentiation stages [37-39], a condition that can be defined as 
immune exhaustion. Such accumulation of elder CD4+ T cells is due 
to a significant reduction in thymic output [37-39] and a high level of 
activation [38,39], which, in turn, induce a premature senescence (40) 
and an increased sensitivity to programmed CD4+ cell death [37-39]. 
In fact, the increased CD4+ T cell death by apoptosis appears to be the 
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final mechanism of the lack of T cell recovery [41]. Several reasons 
may contribute to this general status of immune exhaustion. Lymphoid 
tissue damage induced by HIV replication may impair proper T cell 
development [2] and it has been shown to cause permeability of mucosal 
barriers, increasing blood concentration of bacterial bioproducts, 
resulting in continuous CD4+ T cell activation [39,42]. In addition, 
the exacerbated activation of CD4+ T cells may favor confined HIV 
replication in lymphoid tissue, which may impair key steps of CD4+ T 
cell recovery, i. e. thymic output and CD4+ T cell death.

Immunodiscordant response is associated with an increased risk of 
opportunistic events and death [2]. Because of this, several therapeutic 
approaches have been tested in order to overcome this condition. Given 
the predictive value of nadir CD4+ T cell count, the most obvious 
clinical approach to avoid immunodiscordance is early initiation 
of HAART (CD4+ >350 cells/µL). Beyond this, early antiretroviral 
therapy, the management of immunodiscordant patients has limited 
options. The choice of the antiretroviral drugs might have some effect 
in the CD4+ cell count recovery. Thus, multiple clinical trials have 
shown that protease inhibitors increase the CD4+ to a greater extent 
than non-nucleoside drugs [43]. However, whether this statistically 
significant benefit translates into a clinical benefit is unknown. In 
pivotal clinical trials, Maraviroc has also been found to lead to a greater 
and earlier increase in CD4+ cell counts compared with control groups, 
both in treatment-naïve and experienced patients, including those 
who achieved undetectable viral load and those with virological failure 
[4,45]. Because of this, the use of this drug might provide some benefit 
in the specific setting of patients with immunodiscordant response. 
In a pilot study, the intensification with maraviroc led to a modest 
increase in CD4+ cell counts, a decreased activation of CD4+ and 
CD8+ cells, as measured by the proportion of CD38+ and HLA-DR+/
CD38+ cells and to a improvement in markers of apoptosis [46]. These 
analytical benefits should be evaluated in randomized clinical trials. 
Immune-based approaches, including cytokines (IL-2 or Il-7), have 
transient positive effects on CD4+ T cell count recovery [47], but no 
clinically benefit have been demonstrated. Further knowledge of the 
immunological mechanisms that control CD4+ T cell homeostasis in 
immunodiscordant patients may help to define new immune-based 
approaches. 

Immunological failure and clinical outcome

AIDS-related conditions: It is well-known that achieving 
viral suppression is associated with a marked decrease in the risk 
of clinical complications, regardless the increase in CD4+ cell 
counts. Some studies have even suggested that stopping prophylaxis 
against Pneumocystis jiroveci in patients below 200 cells/µL and viral 
suppression is safe [48]. However, large cohort studies have shown that 
patients with immunodiscordant response have a 2-8-fold higher risk 
of opportunistic infections or death, mainly esophageal candidiasis or 
Pneumocystis jiroveci pneumonia [2,49-51]. In a recent cohort study, 
among 259 events of opportunistic illness, 214 (83%) were observed in 
patients with less than 200 CD4+ cells/µL, and the rate of opportunistic 
infections in patients on HAART in this population was 24.6 episodes 
per 1000 patient-years from 1994 to 2007 [51]. Thus, in patients 
in whom CD4+ T-cell count fails to rise with HAART, therapeutic 
strategies aimed at increasing these cells and reducing the risk of 
infections are needed. 

Non-AIDS related conditions: The increase in survival that 
HIV-infected patients have experienced since HAART is available has 
been related to a lower incidence of AIDS related neoplasms (Kaposi’s 
sarcoma and cerebral lymphoma), and AIDS-defining infections (1). 

However, the probability of suffering from non-AIDS related events 
continues to be high. Among these events, non-AIDS-defining 
malignancies (NADM) are common [52]. These malignancies include 
Hodgkin’s disease, lung and anal cancer among others. 

The risk of NADM could be related to the degree of 
immunosuppression. In fact, the similar spectrum of NADM among 
HIV-infected patients and among those who undergo solid organ 
transplants suggest that immune deficiency, rather than other risk 
factors, drives this increased risk [53]. However, with the exception of 
anal cancer and Hodgkin’s disease, there is no consistent association 
between the level of CD4+ cell counts and the incidence of NADM 
[54]. Coinfection with potentially oncogenic viruses, such as human 
papillomavirus, Epstein-Barr virus and hepatitis C or B viruses could 
also increase this risk [55]. Other potential factor for developing 
NADM is HIV itself, which has oncogenic potential [56] 

On the other hand, despite achieving viral suppression with HAART, 
HIV-infected patients can develop neurocognitive disorders (NCD). 
NCD may be detected in nearly half of patients and it seems to be also 
related with immunodeficiency, as they are closely associated with a 
lower CD4+ nadir [57]. Whereas in the absence of HAART, neurologic 
impairment is mainly due to neuronal damage, in patients receiving 
HAART it could be due in part to chronic inflammation secondary to 
compartmentalized low-level HIV replication or comorbidities [58,59], 
as well as to the use of a HAART combinations with poor penetration 
to the central nervous system [60,61]. 

A better control of NADM and AIDS-related cancers requires 
an early HIV therapy, started with CD4+ cell counts higher than 350 
cells/µL, changes in lifestyle habits (smoke and alcohol cessation), 
vaccination against oncogenic viruses, such as hepatitis B virus or 
human papillomavirus, and screening programs for early cancer and 
NCD detection. 

Liver fibrosis and immune system

Liver fibrosis is a common disorder in all chronic liver diseases, 
which ends up in cirrhosis and liver failure. The cornerstone of liver 
fibrosis is the hepatic stellate cell (HSC). In response of hepatocyte 
necrosis caused by viruses, oxidative stress or bacterial translocation, 
Kupffer cells are stimulated and proinflammatory cytokines, as well 
TGF-β, are released. This leads to HSC activation, with collagen 
production, a switch to a myofibroblast phenotype, further release of 
cytokines, chemokines (MCP-1, CCL21, RANTES) and expression of 
toll-like receptors, which interact with bacterial lipopolysaccharid. In 
this manner, HSC activation perpetuates and excessive production of 
extracellular material keeps on [62]. 

HIV-infected patients may suffer from several disorders causing 
liver fibrosis, such as chronic hepatitis B or C or non-alcoholic 
steatohepatitis due to mitochondrial damage caused by nucleoside 
analogues or insulin resistance. Chronic hepatitis C is by far the most 
common cause of liver fibrosis in developed countries. Fibrosis in 
HIV/hepatitis C virus (HCV)-coinfected patients shows an accelerated 
course [63]. Several studies have demonstrated that a lower CD4+ cell 
count is associated with faster progression of liver fibrosis and with 
poorer clinical outcome in HIV/HCV-coinfected patients [64,65]. 
Accordingly, the greater the CD4+ cell gain after starting antiretroviral 
therapy, the better the clinical outcome [66]. The reasons why fibrosis 
has an accelerated progression in HIV/HCV-coinfected patients are not 
completely understood. Chronic immunoactivaction, increased local 
production of proinflammatory cytokines and bacterial translocation 
may play a role. 

doi:10.4172/2155-6113.1000118
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CCR5 receptor is important in liver fibrogenesis in HIV/HCV-
coinfected patients. Indeed, CCR5 is strongly expressed by activated 
HSC. The surface protein gp120 of HIV induces an increased expression 
of MCP-1, TIMP-1 and IL-6 in cultured HSC, and these effects are 
blocked by CCR5 antagonists [67]. Similarly, gp120 and inactivated 
HIV increase the replication of HCV and the expression of TGF-β, a 
strong promoter of fibrogenesis, in vitro. Both effects are inhibited by 
adding monoclonal antibodies against CCR5 to the cultures [68].

Antiretroviral therapy reduces the activation of the immune 
system in HIV-infected patients [69], as well as the necroinflammatory 
activity in the liver in HIV/HCV coinfection [70]. Consequently, the 
control of HIV replication with antiretroviral therapy slows down 
fibrosis progression [71] and improves the clinical outcome of liver 
disease [66]. These effects are likely to be shared by all combinations 
of HAART. However, inhibitors of the CCR5 could theoretically have 
a unique effect against fibrosis progression, given the critical role that 
CCR5 plays in fibrogenesis. Because of this, studies aimed to compare 
the effects of antiretroviral regimens including CCR5 antagonists on 
fibrosis progression in HIV/HCV coinfection with that yielded by other 
drug combinations are warranted.

Immune activation, inflammation and atherosclerosis in 
HIV-infected patients

Endothelial dysfunction is the link among infection, inflammation 
and atherosclerosis. Endothelial activation triggers an inflammatory 
phenomenon which, acting on leucocytes, platelets, coagulation and 
fibrinolysis, promotes thrombotic occlusion. In HIV-infected patients, 
high levels of endothelial lesion biomarkers have been consistently 
detected, including endothelial cell adhesion molecules, as ICAM-
1, VCAM-1, E-selectin, P-selectin, trombomodulin, class 1 tissue 
plasminogen activator and class 1 tissue plasminogen activator inhibitor 
(PAI-1) [72]. HIV infection may induce endothelial dysfunction 
through several ways. Thus, the virus could infect endothelial cells [73] 
and endothelial cell activation could also be mediated by cytokines 
secreted from activated HIV-infected monocytes or directly by gp120 
and Tat HIV proteins (Figure 1).

If HIV infection induces endothelial lesion and promotes 
atherosclerosis, it makes sense to believe that HIV treatment should 
diminish the inflammatory component. Thus, HIV-RNA load drop after 
starting HAART, and the subsequent T cell function recovery, should 
eventually reduce HIV-associated endothelial dysfunction. In fact, an 
improvement in endothelial biomarkers has been reported in patients 
starting HAART [74] and results of SMART study are in keeping with 
this finding [75]. However, available data are contradictory and the 

results reported on biomarker changes with HIV treatment have been 
variable [76]. As a general rule, biomarker levels improve, but they 
remain higher than in the general population. However, some studies 
are contradictory and higher levels of P-selectin, t-PA y PAI-1 have been 
found in HAART-treated patients, as compared with treatment-naïve 
patients, with a correlation between endothelial biomarkers and plasma 
lipids [73]. Similarly, in other studies, an improvement in endothelial 
biomarkers in patients with antiretroviral treatment has not been 
observed [77]. In addition, a comparison of patients from the SMART 
study with general population showed that HIV-infected patients, with 
or without treatment, had significant higher levels of C-reactive protein, 
D-dimer and interleukin 6 [78], all of them well-known markers of
cardiovascular disease in the general population [79-82].

It is controversial if the effect of different antiretroviral drugs on 
atherogenesis is distinct. Some observational studies have reported that 
specific antiretroviral drugs are associated with higher cardiovascular 
risk [83]. Changes in biomarkers of endothelial function are similar 
with different antiretroviral combinations, suggesting that endothelial 
activation is a general consequence of the suppression of HIV 
replication with HAART, and not a pharmacological effect of specific 
drugs [84]. However atherosclerosis is a multifactor phenomenon, 
associated with aspects still incompletely understood. In HIV-infected 
patients the number of factors influencing atherosclerosis progression 
is even greater than in patients without HIV infection. In fact, they 
include not only classical cardiovascular risk factors, but factors directly 
related to HIV infection and adverse effects of antiretroviral treatment. 
Because of this, only well-controlled, prospective studies will determine 
if a specific antiretroviral drug or combination provides added benefit 
in terms of reducing the progression of atherogenesis.

Immune effects of CCR5 antagonists 

The family of CCR5 antagonists currently comprises Maraviroc, a 
drug commercially available, and Vicriviroc, whose development has 
been recently stopped in late phases due to insufficient efficacy [85]. 
Maraviroc has shown virological superiority over placebo in pretreated 
patients [4] and non-inferiority compared with Efavirenz in treatment-
naïve individuals [86]. CCR5 antagonists have no activity against 
CXCR4 tropic strains [3,44] . Because of this, the presence of only 
CCR5 tropic HIV variants must be proven before using these drugs 
[87-89]. Viral tropism may be determined by phenotypic or genotypic 
procedures. Genotypic techniques are being increasingly used because 
they are cheaper, faster and more accessible for local laboratories 
than phenotypic methods [88]. The response to Maraviroc may be 
reliably predicted using both phenotypic (Trofile ES™) and genotypic 
procedures, either standard population V3 genotyping or genotyping 
by massive pyrosequencing with 454 [90,91]. 

Maraviroc has been shown to induce a greater and faster CD4+ 
cell gain than comparators in all studies reported to date. The superior 
CD4+ cell increase with Maraviroc is independent of achieving plasma 
HIV-RNA levels less than 50 copies/mL or not in pretreated patients 
(Figure 2), a finding that has only been proven so far with Maraviroc 
[45,86,92]. The higher CD4+ cell count with Maraviroc is evident at 
week 4 of therapy [5]. The difference with comparators is greater in 
pretreated patients (79 cells/µL at week 48) than in treatment-naïve 
subjects [30 cells/µL (95% CI: 10-51 cells/µL) at week 48, and 41 cells/
µL (95% CI: 17-65) at week 96] [44,45,86]. A metanalysis of all pivotal 
clinical trials with Maraviroc as salvage therapy has confirmed that this 
drug causes a significantly higher CD4+ cell gain than comparators [32 
cells/µL (95% CI: 19-54)] [93].

Figure 1: HIV infection may induce endothelial dysfunction through several 
ways: the virus may infect endothelial cells, cytokines secreted from HIV-
infected monocytes could activate endothelial cells or directly by gp120 and 
Tat HIV proteins.

doi:10.4172/2155-6113.1000118
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The mechanisms by which Maraviroc leads to a greater CD4+ cell 
recovery are not completely understood. A redistribution of specific 
CD4+ populations, a blockade of gp120–mediated apoptosis as well as 
a reduction of immune activation have been proposed as underlying 
mechanisms for this fact [87]. Indeed, the early decrease in CD4+ and 
CD8+ activated cells that has been observed in treatment-naïve and 
pretreated patients who started Maraviroc parallels with CD4+ cell 
recovery [45,92]. 

The clinical significance of this greater CD4+ cell increase in patients 
receiving Maraviroc is not completely clarified. However, some data 
suggest that it may be relevant. Thus, in severely immunosuppressed 
patients who start therapy, either treatment-naïve or pretreated, the 
longer the time with a CD4+ cell count below 50 or 100/µL, the higher 
the risk of serious opportunistic events [94]. In the MOTIVATE clinical 
trials, patients included in the Maraviroc arm showed a CD4+ cell count 
50/µL over the comparator arm at week 4 and had a significantly lower 
rate of opportunistic events (Figure 3) [45]. In this study, each increase 
of 50 CD4+ cells reduced the risk of a new AIDS-defining event with 

a hazard ratio of 0.679. In the same line, in the MERIT clinical trial, 
which included treatment-naïve patients, the frequency of NADM and 
AIDS-defining events was lower in patients treated with Maraviroc 
than in those receiving Efavirenz (1.7% vs. 3.3%), although in this case 
the differences were not statistically significant, at least in part due to a 
low number of events in both arms [86].

Conclusions
In spite of the fact that HAART allows the reconstitution of the 

immune system, which changes drastically the natural history of HIV-
infection, up to 30% of patients do not achieve a significant gain of 
CD4+ cell counts. This failure to reconstitute the immune system is 
associated with an increased incidence of AIDS-defining conditions. 
In addition, the incidence of NADM, NCD, atherosclerosis and liver 
disease, mainly viral hepatitis-related liver diseases, continues to be 
high in HIV-infected patients under HAART. Chronic activation of 
immune system, which is not completely reversed by HAART, as well 
as persistent immune deficiency, may contribute to the emergence as 
persistence of these disorders. New immune markers that may easily 
and reliably detect the residual immune damage are required and 
could be available shortly. Finally, CCR5 antagonists, a new family of 
antiretroviral drugs, may provide added benefits in terms of CD4+cell 
gain, reduction of immune activation and inflammatory activity. 
Studies aimed to assess the effects of these drugs in patients with 
immune failure, as well as on the incidence on AIDS and non-AIDS 
events, liver fibrosis and atherosclerosis progression are clearly needed.
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