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Abstract
The adult myocardium is a dynamic tissue with different functions which normally adapts to endless mechanical 

loads throughout life. The complexity and diversity of myocardial responses to different conditions imply the 
coexistence of different cell types within a hierarchically ordered architecture. Rare stem/progenitor cells have been 
detected interspersed within the interstitium and/or  adherent to the wall of the capillaries forming the myocardial 
microcirculation. The origin of these cells is still debated. Multipotent and self-renewing cells resident into the 
heart survive to a mechanically and biochemically active environment without acquiring a cardiac phenotype. 
The persistence of an intense physical and biochemical stress do not affect the gene profyle of these cells in 
beating heart. Otherwise, differentiated cardiac cells continually release humoral factors preserving the fate of 
stem/progenitor cells.  It is conceivable that undifferentiated cardiac cells have a different bio-mechanical response 
threshold compared to cells resident in other tissue. The codification of the language adopted by cardiac stem/
progenitor cells to communicate with each other and other myocardial cells will help the cardiovascular therapy to 
fulfill its true potential. 

Stem cell niche in adult heart

Numerous evidences showed that the adult heart maintains a 
weak regenerative potential, such as inherited from the embryonic 
development, which could contribute to form new muscle after an 
injury [1-3]. Bergmann et al. [4] reported that cardiomyocytes can 
renew (1% per year at age 25, 0.45% at age 75) by cell cycle reentry 
to resume mitosis and synthesis DNA. Thus, approximately 50% of 
these cells are renewed during a normal lifespan. Several investigators 
have hypothesized that the plasticity of the adult myocardium depends 
on the presence of cellular residues of cardiomyogenesis interspersed 
within the interstitium, which are stem and/or progenitor cells. Stem 
cells are multipotent, self-renewing and clonigenic cells that can replace 
apoptotic, dysfunctional and/or senescent cardiomyocytes, fibroblasts 
and endothelial cells by translineage commitment [5] or cell fusion 
[6,7]. In addition to new insights regarding the presence of endogenous 
cardiac stem cells, some investigators strongly support the concept that 
the heart could contain stem cell pools or niches [8], which are mainly 
located in epicardial myocardium [9,10]. During heart development, 
cells from the proepicardial organ spread over the naked heart tube 
to form the epicardium. The epicardium-derived cells proved to be 
indispensable for the formation of the ventricular compact zone and 
myocardial maturation by interacting directly with cardiomyocytes 
[11]. In fact the stem/progenitor cells of the niches seem to be connected 
to the pre-existing cardiomyocytes and interstitial supporting cells [12], 
but the complete identity of the interstitial cells and the code of the 
intercellular cross-talk is still unknown.  The maintenance of cardiac 
homeostasis should depend on the survival and activity of stem/
progenitor cells resident into the epicardial niches [13,14]. The size of 
stem cell niche in the adult myocardium might constitutionally vary in 
each person and might be affected by age [15], comorbidities (ie: high 
cholesterol, diabetes, dystrophy) [16-19] and the magnitude of cardiac 
dysfunction [15]. Conversely, Kubo et al. [20] showed that the number 
of cardiac progenitor cells was significantly increased nearly 4-fold in 
patients with end-stage heart failure compared with healthy patients. 
However, it is still debated whether the circulating stem cells replenish 
the cardiac niches and guarantee the maintenance of regenerative 

potential of the adult heart [21-23]. Fortini et al. [24] showed that 
differently from haematopoietic stem cells and endothelial progenitor 
cells, the tissue-committed stem cells significantly increased with the 
progression of the disease, suggesting a possible distinct role of these 
cells in the pathophysiology of HF. However, the recent experimental 
findings demonstrating the marked increase of stem/progenitor cells 
into the failing heart and into the blood stream  highlight the notion 
that the basis of myocardial regeneration is not as important  the 
quality or quantity of resident or engrafted stem/progenitor cells to the 
myocardium, but how these cells communicate to each other and with 
cardiac  cells functionally mature. In this regard, the role of autocrine 
and paracrine signals modulating the communication among different 
resident cells is playing an increasingly important and intriguing point 
of view for the homeostatic cardiac growth and maintenance [25]. Stem 
cells and cardiac resident cells interact continuously and dynamically 
using a physical, biochemical and epigenetic alphabet.

Physical alphabet

Physical stimuli act on the cell shape and can influence the 
biochemistry and genotype of resident stem cells in tissue exposed to 
mechanical forces at different magnitude, such as the beating heart 
[26]. The focal adhesion complex regulates the traffic of signals from the 
physical environment to the cellular function [27]. The magnitude of 
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the signals translated by focal adhesion in stem cells is mainly mediated 
by specific kinases. Hakuno D et al. [28] showed that the kinase of focal 
adhesion is a key regulator of cardiomyogenesis and can direct specific 
cardiac commitment of stem cells. Recent findings demonstrated that 
cells perceive the microenvironment and mediate the cell response 
trough a novel molecular axis composed by Yorkie-homologues YAP 
(Yes-associated protein) and TAZ (transcriptional coactivator with 
PDZ-binding motif, also known as WWTR1), acting as nuclear relays 
of mechanical signals [29]. This new evidence suggest a new target to 
modulate stem cell plasticity and activity, which is interfered by the 
mechanical environment. In this regard, Maioli et al [30] recently 
observed that radiofrequency waves from Wi-Fi technologies optimize 
stem cell plasticity and prime cardiac differentiation in undifferentiated 
cells. 

Biochemical alphabet

To date, a growing body of data suggests that the survival and 
function of cardiac resident cells are mainly attributed to autocrine 
and paracrine signaling mechanisms. The release of such humoral 
biofactors is due to the cells ability to sense cardiac environmentally 
derived cues, but the exact feedback loops are still poorly understood 
[25]. The release of various cardiotropic cytokines and growth factors 
by mesenchymal stem cells underscored the contribution of paracrine 
mechanisms to activate Notch-1 receptor by its ligand Jagged-1 
expressed by the adjacent mesenchymal stem cells [31]. In this regard, 
the Notch-1 up-regulation enhances the cardiomyocytes proliferation. 
Moreover, the paracrine factors released by stem cells can increase the 
survival of cardiac mature cells [32] and angiogenesis [33,34] following 
ischemic insult. High Mobility Box 1 Protein (HMGB1) is a cytokine 
released into the extracellular space by necrotic cells and enhances the 
paracrine response of cardiac fibroblasts by activating resident cardiac 
c-kit+ cells [35]. The effects triggered by biohumoral mediators have 
a response threshold modulated by specific receptors, which can vary 
their density on the dose-dependent basis of  feedback action. Auto-/
Paracrine signals might tune the phenotype of cells resident into 
myocardial niche and ameliorate the cellular interdependence trough 
the modulation of epigenetic mechanisms, such as DNA methylation, 
histone modifications, and ATP-dependent chromatin remodeling.

Epigenetic alphabet

Epigenetic mechanisms are reversible, interdependent, and 
highly dynamic in condition of chromatin structure and specific gene 
transcription programs, thereby contributing to the homeostasis of 
cardiac resident cells. The intercellular cross-talk in myocardial niche 
is allowed in presence of chromatin sensitive to the microenvironment. 
Previous study showed that the sustained acetylation of histone type 4 
in cardiac resident cells tends to allow tissue homeostasis by increasing 
cell survival and angiogenic response after the release of growth factors 
(i.e.: VEGF, HGF) in beating heart; moreover, the scenario due to 
chronic histone acetylation is characterized by an increased rate of 
proliferation of cardiac cells specific mechanisms, such as SMAD-7 
[36] and should depend on SMAD-7 upregulation [37]. Other study 
showed that WNT signaling pathway plays important roles in the 
regulation of histone deacetylase type 1 (Hdac1) during the early stage 
of cardiomyocyte differentiation and that the downregulation of Hdac1 
promotes cardiac differentiation [38]. Epigenetic modifications of 
histones in cardiac resident cells might be modulated also by physical 
stimuli, such as laminar shear stress [39]. Recent study showed that 

caveolin-1, mechanosensitive a protein expressed in lipid rafts of cardiac 
cells induces cardioprotection trough epigenetic mechanisms. In fact, 
Cav-1 KO mouse abolished the acetylation of histone (H3 and H4) and 
increased the methylation of histone in the ischemic preconditioned 
heart [40]. Additionally, the successful terminal differentiation of 
stem cells is not dependent on adequate methylation levels, but   the 
methylation needs to be delivered by the maintenance enzyme DNA 
methyltransferase 1 [41].

Conclusions
Stem cells resident in beating heart constantly communicate with 

the extracellular and cellular environment in order to ensure a stable, 
functional and structural interdependence. The data recently published 
propose a new paradigm in which the activity of stem cells, in harmony 
with that of mature cardiac cells, it is more important than the number 
and typology of resident/engrafted cardiac stem cells to ensure efficient 
function, even in the presence of myocardial damage. Cardiac stem 
cells suffer much physical, chemical and epigenetic stimuli, and their 
sensitivity is based on a receptor-dependent threshold mechanism. 
The decoding of the alphabet used by cells to communicate each 
other within the niche of the adult myocardium will enable a better 
understanding of the role played by rare active cardiac stem cells in 
healthy myocardium, which significantly increase in failing heart 
without hampering myocardial remodeling.
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