alexa Importance of ADME and Bioanalysis in the Drug Discovery | OMICS International
ISSN: 0975-0851
Journal of Bioequivalence & Bioavailability

Like us on:

Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Importance of ADME and Bioanalysis in the Drug Discovery

Pradeep K Vuppala1*, Dileep R Janagam2 and Pavan Balabathula2

1Preclinical Pharmacokinetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN, USA

2University of Tennessee Health Sciences Center, Memphis, TN, USA

*Corresponding Author:
Pradeep K Vuppala
Preclinical Pharmacokinetics Shared Resource
St. Jude Children’s Research Hospital, Memphis, TN, USA
E-mail: [email protected]

Received Date: June 03, 2013; Accepted Date: June 05, 2013; Published Date: June 10, 2013

Citation: Pradeep KV, Dileep RJ, Pavan B (2013) Importance of ADME and Bioanalysis in the Drug Discovery. J Bioequiv Availab 5:e31. doi: 10.4172/jbb.10000e31

Copyright: © 2013 Pradeep KV, et al.. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Bioequivalence & Bioavailability

Editorial

The hunt for new drugs can be divided into two stages: discovery and development. Drug discovery includes generating a hypothesis of the target receptor for a particular disorder and screening the in vitro and/or in vivo biological activities of the new drug candidates. Drug development involves the assessment of efficacy and toxicity of the new drug candidates.

To aid in a discovery program, accurate data on pharmacokinetics and metabolism must be available as early as possible as it eventually contributes to the final success or failure of the compound. The initiation of early absorption, distribution, metabolism and excretion (ADME) screening has dramatically decreased the proportion of compounds failing in clinical trials. The main aim of preclinical ADME is to eliminate weak drug candidates in the early stages of drug development which allow resources to be focused on potential drug candidates [1]. Undesirable pharmacokinetic properties, such as poor absorption, too long or too short half-life (t1/2), and extensive first-pass metabolism majorly contribute to the failure of many drug candidates in early stages of drug development programs. To be successful, a drug candidate needs to posses good bioavailability and a desirable half life (t1/2). Early ADME provides the necessary data for selecting preclinical candidates, appropriate dosage forms, formualtion and accelerates the timeline for investigational new drug applications and subsequently new drug application submission to the FDA [2,3].

Pharmacokinetic (PK) parameters are extrapolated from measurement of drug concentration in the plasma, blood, or other biological matrix over a selected time period. Pharmacokinetic data provides information that can guide future animal and clinical studies for the selection of the dose levels and frequency of administration. Many of the approved drugs generate metabolites which possess biological activity. These active metabolites may have different pharmacology and PK properties than the parent drug. A thorough understanding of the properties of active metabolite is important for estimating toxicity and therapeutic outcome. It is ideal to assess the metabolism of new drugs in vitro before proceeding to clinical studies. Early information about the enzymes involved in the drug metabolism is very useful in the design of drug-drug interactions studies [4,5].

The prime determinant of efficacy and unexpected toxicity of a drug is how it penetrates biological barriers such as intestinal wall, or bloodbrain barrier (BBB). This is true in central nervous system (CNS) drugs, because drug candidates possessing in vitro efficacy do not penetrate the BBB will not show in vivo efficacy. The entry of drugs in to the CNS is limited by the presence of the BBB. BBB effectively isolates the brain from the blood because of the presence of tight junctions connecting the endothelial cells of the brain vessels. In addition to this, drug metabolizing enzymes and efflux pumps, such as P-glycoprotein (P-gp) and the multi-drug-resistance protein located within the endothelial cells, push out the exogenous molecules from the brain. As a result, CNS drugs have high failure rate in the developmental stages [6].

Bioanalytical support plays a vital role during the lead optimization stages. The major goal of the bioanalysis is to assess the over-all ADME characteristics of the new chemical entities (NCE’s). Arrays of bioanalytical methods are required to completely describe the pharmacokinetic behavior in laboratory animals as well as in humans [7]. Bioanalytical tools can play a significant role for the progress in drug discovery and development. Physiologic fluids such as blood, serum, plasma, urine and tissues are analyzed to determine the absorption and disposition of a drug candidate administered to a test animal [8]. Often the concentration of the NCE’s in the biological matrix changes with time, and perhaps fall below nanogram level, therefore, quantification limits for the bioanalytical methods should be much lower than those required for analytical methods [9]. Effects from the endogenous materials (such as plasma proteins) of the biological matrix and stability issues make the accurate analysis difficult. Methods developed to analyze the pharmacokinetic study samples need complete separation of the analytes from matrix components. The performance of the bioanalytical assay can be improved by removing interferences from the matrix trough complex sample preparation steps, and concentrating the analyte of interest. Common methods of sample preparation include protein precipitation, liquid-liquid extraction and solid phase extraction [10]. Appropriate bioanalytical methods are required to detect drug candidate at low nanogram levels, at the same time linearly over three orders of magnitude [8].

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Recommended Conferences

Article Usage

  • Total views: 14653
  • [From(publication date):
    July-2013 - May 25, 2018]
  • Breakdown by view type
  • HTML page views : 10630
  • PDF downloads : 4023
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7