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Abstract
Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) promote vascular growth in vivo. Here we 

examined the intracellular regulatory machinery involved in the in vitro angiogenic behaviour exhibited by UCBMSCs. 
Angiogenic activity was measuring in the standard Matrigel-based culture assay after treatment of cells with known 
modulators of early growth response factor (Egr-3) and endothelial cell (EC) angiogenesis. Egr-3 expression was 
assessed by quantitative RT-PCR and indirect immunofluorescence, and specifically abrogated using small interfering 
RNA (siRNA) technology. While addition of phorbol-12-myristate-13-acetate (PMA) promoted angiogenic capacity 
(P<0.001), selective inhibitors of PKC/MAPK/ERK abrogated this capacity (P=0.016) in UCBMSCs. Treatment with 
PMA increased Egr-3 mRNA and protein levels (P<0.001). However, cyclosporine A (CsA) and vascular endothelial 
growth factor (VEGF) affected neither Egr-3 levels nor the formation of polygonal cell networks. PMA also induced 
ERK1/2 phosphorylation, which was abolished by the selective inhibitor U0126 (P=0.021 and P=0.014, respectively). 
Marked inhibition of network-forming capacity was observed in siEgr-3-transduced cells (P<0.001). Taken together, 
our results highlight that Egr-3 is commonly involved in the molecular machinery regulating mature EC and multipotent 
MSC angiogenesis. This knowledge may be applied to increase therapeutic efficacy against human vascular diseases. 

Keywords: Umbilical cord blood; Mesenchymal stem cells;
Endothelial cell; Angiogenesis; Egr-3
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Introduction
In order to maintain homeostasis, tissues of multicellular 

organisms are endowed with a vascular system responsible for gas 
and nutrient exchange. Maintenance of this paramount function is 
dependent on endothelium integrity. Our view of the endothelium has 
changed gradually over the years. Whereas the endothelium used to be 
considered a simple inert barrier between blood vessels and subjacent 
tissues, it is now recognized as a specialized layer of cells - endothelial 
cells (ECs) - [1]. It is clear that ECs have critical roles in organism 
homeostasis and in moving nutrients, gases and waste products to and 
from cells [2-4]. Therefore, loss of vascular endothelial homeostasis 
critically contributes to the origin and/or progression of numerous 
ischemic, inflammatory, infectious and immune diseases in humans 
[5]. 

There is compelling evidence that vascular maintenance arises 

due mainly to two non-exclusive mechanisms: local maintenance by 
pre-existing or mature (terminally differentiated) ECs (sprouting 
angiogenesis) [6] and distant maintenance by specific recruitment of 
vascular precursors from bone marrow (vasculogenesis) [7]. A variety 
of both cellular and extracellular molecules, including numerous 
growth and early response factors, chemokines, interleukins and 
metalloproteinases, take part in active angiogenesis [8,9]. These 
molecules include the early growth response factor (Egr)-3, which 
is a transcription factor rapidly induced by extracellular stimuli that 
regulates proliferation and differentiation in multiple cell types such as 
ECs [10]. Moreover, Egr-3 has been reported as one of the most strongly 
activated genes by vascular endothelial growth factor (VEGF) and its 
specific suppression attenuates EC growth [11,12]. At the molecular 
level, Egr-3 has been related to intracellular signaling mediated by 
protein kinase C (PKC) [13,14] and mitogen-activated protein kinase 
(MAPK)/extracellular-signal related kinase (ERK) [15,16]. Notably, Li 

Journal of
Stem Cell Research & TherapyJo

ur
na

l o
f S

tem
Cell Research
&

Therapy

ISSN: 2157-7633



Citation: Roura S, Bagó JR, Gálvez-Montón C, Blanco J, Bayes-Genis A (2013) In Vitro Characterization of the Molecular Machinery Regulating 
Umbilical Cord Blood Mesenchymal Stem Cell Angiogenesis: A Step Towards Multipotent Stem Cell Therapy for Vascular Regeneration. J 
Stem Cell Res Ther 3: 140. doi:10.4172/2157-7633.1000140

Page 2 of 10

Volume 3 • Issue 3 • 1000140
J Stem Cell Res Ther
ISSN:2157-7633  JSCRT, an open access journal 

et al. [15] described Egr-3 as the precise effector molecule of MAPK-
ERK signaling involved in enduring memory formation in activated 
neurons.

In recent years, umbilical cord blood (UCB) has emerged as a 
promising source of cells for human regenerative medicine [17] and 
UCB-derived mesenchymal stem cells (MSCs) have been shown to 
promote vascular growth in vivo [18]. However, further understanding 
of the molecular mechanisms regulating UCBMSC angiogenesis 
should provide insights that may help develop more effective therapies 
against human diseases that involve vascular deficits. Particularly, we 
hypothesized that Egr-3 was a key mediator of UCBMSC angiogenesis 
because its expression increased as cells gained EC characteristics and 
self-organized to form branched polygonal cell networks similar to 
those developed by bona fide ECs [18]. 

Thus, with the overarching aim of improving their therapeutic 
efficacy, we here examined the intracellular regulatory machinery 
involved in the angiogenic behaviour exhibited by UCBMSCs by: (1) 
exposure to known modulators of both Egr-3 and EC angiogenesis; (2) 
assessment in the standard Matrigel assay; and (3) specific suppression 
of Egr-3 expression using small interfering RNA (siRNA) technology.

Materials and Methods 
Cell culture and treatments

Isolation and culture of UCBMSCs were previously described 
in detail [14,18,19]. Briefly, a total of 25 UCB samples (60-100 ml) 
from the umbilical cord vein were processed 12 h post-extraction. 
Blood cells were clarified by previous centrifugation and resuspended 
in 30 ml calcium- and magnesium-free phosphate-buffered saline 
(PBS) (Invitrogen). The cell suspension layered over 1.077 g/ml 
Lymphoprep (Nycomed) was centrifuged at 400g for 30 minutes. 
Mononuclear cells recovered by centrifugation were eliminated from 
contaminant red blood cells by incubation with lysis reagent Pharm-
Lyse (BD Biosciences) for 15 minutes. Recovered cells were grown 
in α-MEM supplemented with 30% fetal bovine serum (FBS), 1% 
penicillin-streptomycin (Invitrogen), 1 mM L-glutamine and 10-7 M 
dexamethasone (Sigma) at 37°C in 5% CO2 in air. Adherent cells were 
pooled by trypsinization, designated as primary culture (passage 0) and 
replated for further expansion in the same medium supplemented with 
10% FBS and without dexamethasone.

When indicated, cells were cultured in α-MEM with 2% FBS plus: 
phorbol-12-myristate-13-acetate (PMA) (100 nM, 2 h), dimethyl 
sulfoxide (DMSO) (0.2% v/v, 16 h) and CsA (200 ng/ml, 16 h)  (Sigma); 
U0126 (20 µM, 16 h), U0124 (20 µM, 16 h) and Cal C (1 µM, 16 h) 
(Calbiochem); ISO (1 µM, 16 h; Boehringer Ingelheim); and human 
recombinant VEGF (10 ng/ml, 48 h; R&D Systems).

The study protocol was approved by the local ethics committee 
(Comitè Ètic d’Investigació Clínica, HuGTiP, Ref. CEIC: EO-12-
022) and conformed to the principles outlined in the Declaration of 
Helsinki. In all cases written informed consent was obtained from the 
donors.

Flow cytometry

To measure expression of surface antigens, cells (5x105/100 µl) 
were labelled with 10 µl of mouse fluorescein (FITC)- or phycoerythrin 
(PE)-conjugated antibodies (Abs) against human CD105 (Serotec), 
CD90, CD14, CD34 and CD45 (BD Pharmingen) during 30 min 
at room temperature (RT). Labelled isotype-matched IgG (Caltag 
Laboratories) were used as negative controls. Intensity levels for each 

antigen were calculated as the ratio between specific antibody and 
control (1=no difference). Data acquisition and further analysis were 
carried out using a Coulter EPICS XL flow cytometer and the Expo32 
software (Beckman Coulter), respectively.

Changes in cell viability were also assessed by flow cytometry using 
the Annexin V Apoptosis Detection Kit and the 7-amino-actinomycin 
D (AAD) viability staining solution (eBiosciences). Cells (5x105) were 
labelled according to the supplier’s instructions. Data acquisition 
and analysis were then carried out using a Coulter EPICS XL flow 
cytometer and the Expo32 software (Beckman Coulter), respectively. 
As positive control for the induction of apoptosis, cells were treated 
with camptothecin (10 µM, 16 h; Sigma).

Differentiation assays
Adipogenic induction: UCBMSCs were cultured in α-MEM 

(Sigma) supplemented with 10% FBS, 1 mM L-glutamine and 
1% penicillin/streptomycin, 1 µM dexamethasone, 0.5 mM 
isobutylmethylxanthine, 10 µg/ml insulin and 100 µM indomethacin 
(Sigma). Medium was replaced every 3-4 days and differentiated cells 
were detected at day 14 following Oil red O (Sigma) staining, which 
detects the presence of intracellular lipid accumulation.

Osteogenic induction: UCBMSCs were cultured in α-MEM 
supplemented with 10% FBS, 1 mM L-glutamine and 1% 
penicillin/streptomycin, 100 nM dexamethasone, 10 mM sodium 
β-glycerophosphate and 0.05 mM ascorbic acid during 14 days. 
Deposition of calcium matrix was then detected by specific staining 
with Alizarin red S (Sigma).

Quantitative RT-PCR
Whole RNA content was isolated from cells using the QuickPrep 

Extraction Kit (Amersham). cDNA from 2 µg of RNA was obtained 
using random hexamers and the ScriptTM One-Step RT-PCR Kit (Bio-
Rad) following the supplier’s protocol. Subsequently, 2 µl of cDNA 
were amplified in a final volume of 50 µl containing 25 µl TaqMan 2X 
Universal PCR Master Mix and 2 µl of the following FAM-labelled 
primer/probes (Applied Biosystems): CD31 (Hs00169777_m1), CD34 
(Hs00990732_m1), CD36 (Hs00169627_m1), CD102 (Hs00168384_
m1), early growth response factor (Egr)-3 (Hs00231780_m1), stromal 
cell-derived factor (SDF)-1α (Hs00171022_m1), VEGF (Hs00173626_
m1), sarcomeric α-actinin (Hs00241650_m1) and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) (Hs99999905_m1). Each sample 
was run in duplicate in the same experiment and amplification data 
from three independent experiments were analyzed on the ABI Prism 
7000 Sequence Detection System. The ∆ threshold cycle (Ct) method 
was used to quantify the relative expression for each gene using 
GAPDH as endogenous reference [20].

Indirect immunofluorescence
Egr-3 protein expression was analyzed following fixation with 4% 

paraformaldehyde (Sigma) for 10 min at room temperature (RT). Cells 
were permeabilized with magnesium-free PBS supplemented with 10% 
horse serum and 0.5% Triton X-100 (Sigma) during 2 h at RT. A specific 
rabbit Ab against human Egr-3 (2 µg/ml; Santa Cruz Biotechnology) 
was then applied. Cell nuclei were also counterstained with Hoechst 
(0.5 µg/ml) (Sigma) for 10 min at RT. A donkey anti-rabbit Alexa Fluor 
488-conjugated Ab (1 µg/ml; Invitrogen) was finally used to detect 
labelled cells under a Leica confocal laser scanning microscope (TCS 
SP5).  

Western blotting

Whole cell extracts were obtained using the Mammalian Cell 
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Lysis kit (Sigma) according to manufacturer’s instructions. Equivalent 
amounts of protein (assayed with the BCA protein assay; Pierce 
Biotechnology) were fractionated by 10%-15% SDS-PAGE and 
transferred to nitrocellulose membranes (0.45µm pore size; Bio-Rad). 
Membranes were blocked with PBS supplemented with 5% non-fat dry 
milk and 0.05% Tween-20 o/n at 4ºC, and probed with mouse anti-
human Abs against β-actin (1/1000 dilution), ERK1/2 (0.5 µg/ml) 
and phospho (p)-ERK (1 µg/ml) (Santa Cruz Biotechnology). Protein 
bands were detected using a HRP-conjugated goat anti-mouse IgG 
(H+L) Ab (1/50000 dilution; Pierce Biotechnology), and visualized 
using the Super Signal West Pico Chemiluminiscent Substrate (Pierce 
Biotechnology) and the Bio-Rad Molecular Imager ChemidocTM XRS+. 
Protein levels were quantified using the Quantity one 1-D Analysis 
software (Bio-Rad) and expressed as arbitrary units of optical density. 
Background signals were subtracted from a membrane region close to 
the bands of interest. Densitometric p-ERK values were normalized to 
β-actin (to control for variation in protein loading) and to total ERK.

Matrigel assay

The capacity to form cell networks was assessed using the In 
vitro Angiogenesis Assay Kit (Chemicon) as previously described 
[18]. Briefly, control UCBMSCs, which had been either pre-treated 
or transduced with siRNA sequences, were detached using non-
enzymatic cell dissociation medium (Sigma) to avoid cell membrane 
antigen proteolysis. Cells (1x105) were then seeded onto 24-well plates 
pre-coated with 200µl ECMatrix (Matrigel). Agonists and selective 
inhibitors added to the cultures were kept in the samples for the 
duration of the experiment. The cell networks that developed were 
examined from 10 images. Angiogenic capacity was measured as the 
number of network circles per mm2, a measurement equivalent to the 
classic determination of total network length [21]. Three independent 
cultures were tested per condition.

siRNA transfection

Cells were transduced with 2 µg siControl-GFP, siControlA and 
siEgr-3 (Santa Cruz Biotechnology). The siEgr-3 consisted of a pool of 
3-5 target-selective 19-25 nucleotides in length designed to efficiently 
knockdown Egr-3 gene expression. All cell transductions were 
performed via a nonviral Nucleofector procedure (Amaxa® Cell Line 
Optimization Nucleofector® Kit; Lonza Cologne AG) with the program 
U23 for transfection of human MSCs according to the manufacturer’s 
instructions [22].

Statistical analysis

Statistical analysis was performed using two-tailed Student’s 
t-tests. Values are expressed as mean ± standard deviation (SD). One-
way analysis of variance with Tukey’s B post-hoc analysis was applied 
to determine significance among more than two groups. Descriptive 
statistics were performed using SPSS Statistics 15.0.1 (SPSS Inc.), and 
statistical tests were considered significant when P<0.05.

Results
Modulation of Egr-3 expression by PKC/MAPK/ERK in 
UCBMSCs 

Primary cultures of elongated fibroblast-like cells were established 
from human UCB samples. Cultured cells were homogenously 
recognized as MSCs according to the International Society for Cellular 
Therapy criteria (standard surface antigen pattern and multipotency) 
[23]. The cells were strongly positive for CD105 (18.5 ± 0.14) and CD90 

(60 ± 11), and consistently negative for CD45 (1 ± 0), CD34 (1.2 ± 0.2) 
and CD14 (1 ± 0) (Figure 1A). Induction of UCBMSCs with adipogenic 
and osteogenic media resulted in intracellular accumulation of lipid 
droplets and in high extracellular deposition of calcium, respectively 
(Figure 1B).

We had previously demonstrated the following: 1) Egr-3 expression 
was highly promoted when human UCBMSCs differentiated towards 
the EC lineage; 2) in Matrigel, similar to mature ECs such as human 
umbilical vein ECs (HUVECs), UCBMSCs had the ability to rapidly 
migrate developing well-organized vascular-like networks; and 3) 
developed networks showed high amounts of Egr-3 within the nuclei 
of aligned cells [18].

In accordance with this background, we further investigated 
the molecular machinery regulating the angiogenic behaviour of 
UCBMSCs and whether Egr-3 was mechanistically involved. Thus, 
cells were then exposed to PMA, CsA and VEGF, known modulators 
of Egr-3 expression and EC angiogenesis, and seeded in Matrigel. In 
this standard assay of angiogenesis, which is often preferred over other 
in vitro assays because of its ease of use, rapidity and the ability to 
measure key steps in angiogenesis, cells rearrange and align forming a 
polygonal cell network resembling growing blood vessels from which 
angiogenic capacity may be evaluated, e.g. by measuring the number of 
network circles per unit area [24-26]. Egr-3 gene expression level was 
also assessed using real-time PCR, which is the most direct, sensitive, 
reproducible and accurate method to quantify gene activity [27].  

While PMA induced increases in Egr-3 mRNA and protein and 
promoted the capacity to form well-organized vascular-like networks 
in comparison with untreated UCBMSCs (P<0.001), the addition of 
neither CsA nor VEGF significantly affected any of these properties 
(Figure 2). In addition, exposure to calphostin C (Cal C), which 
is a commonly-used inhibitor of PKCα,  drastically reduced both 
PMA-induced Egr-3 gene transcription (P<0.001) and the Matrigel-
mediated formation of cell network circles by UCBMSCs (P<0.001; 
Figure 2). Stimulation of cells with the G protein-coupled receptor 
agonist isoproterenol (ISO) [28] also doubled Egr-3 gene expression 
in comparison with untreated cells (P=0.013; data not shown). In 
contrast to the effect of each agent individually, combined ISO and 
PMA treatment had a reduced effect in comparison with PMA alone 
regarding Egr-3 activation and network-forming capacity (Figure 
2). U0126, which is a selective pharmacological inhibitor of MAPK/
ERK signaling [29], suppressed both Egr-3 transcriptional activation 
and cell network organization in treated cells (P=0.015 and P=0.016, 
respectively; Figure 2). Moreover, the presence of Cal C in the cell 
culture medium significantly reduced PMA-induced angiogenesis 
as well as Egr-3 activation in UCBMSCs (P<0.001; Figure 2). Neither 
cell network-forming ability nor Egr-3 expression in UCBMSCs were 
affected by addition of U0124, an inactive structural analogue of U0126 
(Figure 2).

Importantly, analysis of both Annexin V expression and 7-amino-
actinomycin D (7-AAD) staining by flow cytometry showed that the 
observed changes in the angiogenic behaviour of UCBMSCs did not 
result from variations in cell apoptotic rate and/or viability following 
each cell treatment (Figure 3). Western blot experiments also evidenced 
that the addition of PMA to UCBMSCs induced an increase in ERK1/2 
phosphorylation (P=0.021), and that this effect was significantly 
abolished by treatment with U0126 (P=0.014; Figure 4). 

Collectively, these observations suggest so far that the modulation 
of Egr-3 expression and the promotion of network-forming capacity in 
UCBMSCs are mediated through PKC/MAPK/ERK signaling. 
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Specific suppression of Egr-3 abrogates cell network capacity 
of UCBMSCs

To clearly demonstrate that Egr-3 directly regulates UCBMSC 
angiogenic behaviour, cells were transduced with a specific siRNA 
against Egr-3. This strategy resulted in a marked reduction of both Egr-
3 mRNA and protein levels in siEgr-3-transduced cells relative to those 
transduced with control siRNA (siControlA) (P<0.001; Figures 5A and 
5B). Moreover, the number of developed network circles was inhibited 
by 85% in siEgr-3-transduced UCBMSCs (Figure 5B). Interestingly, 
specific suppression of Egr-3 expression had no effect on either cell 
apoptotic rate or cell viability (Figure 3). Data from quantitative RT-
PCR analysis of siEgr-3-transduced UCBMSCs finally indicated that 
the expression pattern of EC markers was not broadly different in 
comparison with that exhibited by siControlA-transduced cells. Only 
CD36 expression was reduced by 50%, whereas CD102 activation 
increased (2-fold) in siEgr-3-transduced cells (Figure 5C). Thus, the 
transcriptional profile observed in siEgr-3-transduced UCBMSCs is 
similar to that reported by Suehiro et al. [10] who revealed a preferential 
role for Egr-3 in regulating mainly genes involved in cell adhesion and 

migration (CD102), growth, and homeostasis (CD36) instead of EC 
fate acquisition.

Discussion
The presented results identify Egr-3, which is a transcriptional 

factor highly expressed during mature, terminally differentiated EC 
angiogenesis [11,30], as a key mediator of UCBMSC angiogenesis. In 
particular, we find that a central PKCα/MAPK/ERK pathway common 
to mature ECs regulates Egr-3 in UCBMSCs. Moreover, selective 
suppression of Egr-3 significantly abrogates the angiogenic capacity 
of UCBMSCs. Following Egr-3 inhibition, the reduction in network 
circles developed by UCBMSCs was similar to that previously found 
in ECs [10]. Thus, our findings suggest the existence of a conserved 
regulatory machinery regulating angiogenesis between ECs and 
multipotent MSCs (Figure 6). This knowledge should provide insights 
that may help develop more effective therapies against human vascular 
diseases. 

In addition, our results agree with the traditional concept that 
PKC has an essential role in angiogenesis, based on the findings that 
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Figure 1: Characterization of primary cultures of human UCBMSCs. A) Schematic illustration of an UCBMSC showing fluorescence intensity data in arbritary units 
from surface antigen expression analysis by flow cytometry. UCBMSCs were strongly positive for CD105 and CD90 (60 ± 11), and consistently negative for CD45, 
CD34, and CD14. Values are expressed as mean ± SD. B) Standard MSC differentiation into adipogenic and osteogenic cell-lineages.  Images display a control, non-
differentiated (left) and differentiated cell cultures following staining with Oil red O (middle) and Alizarin red S (right). Scale bars: 100 µm.  
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phorbol esters, by mimicking the natural PKC activator diacylglycerol, 
induce angiogenesis [31-33] and that specific knockdown of PKC 
prevents PMA-induced angiogenesis [13]. In our experiments, Egr-3 
expression and cell network-forming capacity of UCBMSCs was not 

affected by VEGF levels or by the powerful immunosuppressive agent 
CsA, which are known to modulate VEGF-mediated EC angiogenesis 
and Egr-3 levels in hematopoietic-lineage cells such as lymphocytes T 
respectively [11,13,30,34-37]. In regards to both VEGF and CsA, the 
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Figure 2: Modulation of Egr-3 expression levels and angiogenic capacity by UCBMSCs. Representative images and quantification of the cell network-forming 
capacity, measured as the number of network circles per unit area, of UCBMSCs after 2 h in Matrigel following treatment with a specific agonist (PMA) and inhibitors 
(Cal C and U0126) of PKCα/MEK/Egr-3 signaling. Scale bars: 100 µm. Histogram represents the relative levels of Egr-3 gene expression and cell network formation 
compared with those in control or untreated cells. DMSO and U0124 were used as vehicle and negative control, respectively. Note that there is equivalence in the 
scales of gene expression and network circles/mm2, maybe indicating the close relationship between these two cellular events. Data are from three independent 
experiments and all values are expressed as mean ± SD. Specific detection of Egr-3 protein in control, PMA- and U0126-treated UCBMSC cultures by indirect 
immunofluorescence. *P<0.001, **P=0.016 and †P=0.015. Scale bars: 20 µm. A minimum of 10 microscopic fields per condition and experiment (n=3) were analyzed 
with similar results.
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Figure 3: Analysis of cell viability. Raw data from representative analysis of Annexin (Ann) V expression and 7-AAD staining in UCBMSCs treated with camptothecin, 
used as positive control for cell apoptosis, calphostin C and U0126, and following transduction with siEgr-3. Ann+7-AAD- and 7-AAD+ label early and late apoptotic 
cells, respectively. The percentage of live cells under each condition is indicated in the corresponding dot plot. Treatment with camptothecin induced a moderate 
amount of programmed cell death, indicative of intrinsic UCBMSC robustness. The 10-fold increase in the fluorescence emitted by calphostin C-treated cells did no 
effect measured levels of cell death. N=2 for each experimental condition with similar results. 
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Figure 4: PMA induces phosphorylation of ERK1/2 in UCBMSCs. Western blot panels show that ERK1 (44 kDa) and ERK2 (42 kDa) were phosphorylated 
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N=3 for each experimental condition with similar results. Values are expressed as mean ± SD. *P=0.021 and **P=0.014. 
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Figure 5 Inhibition of UCBMSC angiogenic capacity by specific suppression of Egr-3. (A) Representative images showing internalization of control sequence 
(siControl-GFP conjugate) (left), and specific detection of Egr-3 in siControlA- (middle) and siEgr3-transduced (right) cells. Scale bars: 20 µm (B) Representative 
images of the cell network developed by UCBMSCs transduced with siControlA and siEgr-3 after 5 h in Matrigel. Histogram indicates the number of network circles and 
the transcriptional levels of Egr-3 in siControlA- and siEgr3-transduced cells. A minimum of 10 microscopic fields per condition and experiment (n=3) were analyzed. 
Scale bars: 100 µm. Values are expressed as mean ± SD and *P<0.001. (C) Transcriptional profile exhibited by siEgr-3-transduced UCBMSCs showing the relative 
changes (compared with siControlA-transduced cells) in specific (CD31, CD34, CD36, CD102 and VEGFA) and non-specific (SDF-1α and sarcomeric α-actinin) EC 
genes. N=3 with similar results. Values are expressed as mean ± SD. *P<0.001 and **P<0.05.
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lack of response by UCBMSCs may be due, in part, to the fact that 
these cells do not express baseline levels of VEGFR-2 [18] and do not 
belong to this particular cell lineage. However, Egr-3 levels declined 
and vascular-like network formation was inhibited following treatment 
with Cal C and U0126, known inhibitors of PKCa and MAPK/ERK 
(MEK) signaling [10,15,38,39]. ISO, which has been related to MEK 
activation [28], also produced a paradoxical effect; stimulating Egr-3 
expression in UCBMSCs when used alone, but having an attenuating 
effect when used in combination with PMA. Although increase in Egr-
3 level following ISO treatment could be a mere artifact arising from 
the fact that isoproterenol and modulators of Egr-3 gene expression 
utilize common signaling pathways, this result could support previous 
observations of a regulatory mechanism based on crosstalk between 
G protein-coupled receptors and components downstream of 
receptor tyrosine kinases such as MAPK [40]. Thus, taken together, 
it would appear that independent of CsA and VEGF, Egr-3 mediated 
UCBMSC angiogenic behaviour through the integration of distinct 
signals which efficiently modulate the level of its downstream 
response. Further studies would be necessary to determine whether 

Egr-3 expression is also modulated through both CXCR-4- and p38 
mitogen-activated kinase-mediated signaling in UCBMSCs, as is the 
case in T lymphocytes [39]. For instance, inhibition of Egr-3-mediated 
activation through the p38 pathway could enhance cell differentiation 
towards the cardiomyogenic lineage, as suggested by previous findings 
using human embryonic stem cells [41].

In conclusion, we confirm that UCBMSCs constitute a valuable 
model for the analysis of angiogenic cell migration and assembling 
into growing vascular structures [18]. In a clinical context, the 
understanding that effective repair of the vast majority of tissues must 
be accompanied by the provision of an adequate vascular system has 
prompted an active search for cell types that could facilitate this process 
during therapy. Recently, together with MSCs derived from bone 
marrow and adipose tissue [42], UCB has been shown to be a valuable 
source for human regenerative medicine [17]. Particularly, UCBMSCs 
exhibit high capacity for migration and development of an extensive, 
well-organized polygonal cell network that is equivalent to that 
produced by HUVECs in vitro [18]. Furthermore, in mice, UCBMSCs 

In Vitro In Vivo
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Matrigel-induced network Functional microvasculature
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Figure 6: Regulatory mechanisms controlling angiogenesis by multipotent MSCs and mature ECs. To regulate their overall activities, cells use a variety of 
clearly-defined environmental signals differentially associated with ON (black arrows) and OFF (red arrows) mechanisms, which stimulate and inhibit intracellular 
effectors respectively. Our results from UCBMSCs indicate that response to angiogenic stimuli is controlled by a central PKC/MAPK/ERK/Egr-3 signaling clue. In 
Matrigel, UCBMSCs form well-developed networks resembling last stages of in vivo angiogenesis in which they also participate actively, as we have previously 
demonstrated in mice where new microvasculature connected with the host circulatory system are developed after subcutaneous co-transplantation [18]. We also 
suggest that there are mechanisms unique to mature ECs (discontinuous lines) and common (continuous lines) to multipotent MSCs and ECs regulating angiogenesis. 
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induces the generation of microvasculature connected with the host 
circulatory system. When implanted with fibrin in a myocardial infarct 
model, UCBMSCs also organized into vascular networks, reduced 
scar size and increased the blood vessel-occupied area in the subjacent 
myocardium [18]. The findings presented here contribute to a better 
understanding of the molecular machinery regulating angiogenesis by 
multipotent MSCs [43]. Notably, we highlight that Egr-3 is commonly 
involved regulating mature EC and multipotent MSC angiogenesis 
through a central PKCα/MAPK/ERK via; this knowledge may be 
applied to increase efficacy of cell therapies against human diseases 
with vascular deficit, including cardiac alterations of ischemic origin.
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