Reach Us +1-504-608-2390
<em>In Vitro</em> Protease Inhibition, Modulation of PLA2 Activity and Protein Interaction Studies of <em>Calotropis gigantea</em> | OMICS International
ISSN: 2155-9899
Journal of Clinical & Cellular Immunology

Like us on:

Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

In Vitro Protease Inhibition, Modulation of PLA2 Activity and Protein Interaction Studies of Calotropis gigantea

DSVGK Kaladhar1*, Govinda Rao Duddukuri1, Ramesh K1, Varahalarao Vadlapudi2 and Nagendra Sastry Yarla1
1Department of Biochemistry/Bioinformatics, GITAM University, Visakhapatnam, AP, India
2Department of Biochemistry, Dr. Lankapalli Bullayya P G College, Visakhapatnam-530013, AP, India
Corresponding Author : DSVGK Kaladhar
Department of Biochemistry/Bioinformatics
GITAM University
Visakhapatnam, AP, India
Tel: +91-9885827025
E-mail: [email protected]
Received: July 25, 2013; Accepted: September 23, 2013; Published: September 30, 2013
Citation: DSVGK Kaladhar, Duddukuri GR, Ramesh K, Vadlapudi V, Yarla NS (2013) In Vitro Protease Inhibition, Modulation of PLA2 Activity and Protein Interaction Studies of Calotropis gigantea. J Clin Cell Immunol 4:165. doi:10.4172/2155-9899.1000165
Copyright: © 2013 DSVGK Kaladhar, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Visit for more related articles at Journal of Clinical & Cellular Immunology


Plant protection strategies have been proven to be the most promising approach on selection of protease inhibitors. Protease inhibition and PLA2 activity of white and violet varieties of Calotropis gigantea L., has been studied. Comparative protease inhibition studies on white and violet varieties have shown small variation in protease inhibition. In trypsin inhibition, white variety has not shown inhibition but the violet variety has shown the inhibition at 10 μl concentration. In Protease K inhibition, white variety has not shown inhibition but the violet variety has shown the inhibition at 10 μl and 5 μl concentrations respectively. In Chymotrypsin inhibition, both white and violet varieties have not shown any protease inhibition. The plant has also exhibited PLA2 inhibition activity in blood agar containing egg yolk. Protein interaction network profile has shown interactions with circulatory, neural and immune system components that can modulate and simulate the mechanism in the system approach.

Calotropis gigantean; Protease inhibition; PLA2 activity; Protein interaction
Plant cells contain different types of proteases essential for cellular activities and regulatory processes [1]. The function of proteases is repressed by molecules like Protease inhibitors, permitted the functions of the cellular processes like antigen production and the degradation of membrane or regulatory proteins [2].
Several natural products showing protease inhibitors are proteins that are important inferences for diagnosis and therapy [3]. Proteases are ubiquitous present in many living systems that are physiologically necessary for cellular processes [4]. When cells are disrupted, enzymatic proteases releases and quickly degrade proteins that show severe disruption of cellular and protein metabolism [5,6]. Proteases that are harmful to the cells can be inhibited by protease inhibitors. This can lead in protecting the protein of interest from degradation [7].
Many plant protection strategies have been established by various researchers and the most promising approach that is focused on selection of the natural protease inhibitors (PIs) [8] and applicable in diagnosis and therapy. Hydrolytic cleavages of proteolytic enzymes catalyzing specific peptide bonds in target proteins are called as proteases [9]. Proteases play key roles in various biological processes in higher organisms that serve as mediators of signal transduction in many of the cellular events such as apoptosis, inflammation, hormone processing and blood clotting pathways.
Calotropis gigantia is used as a traditional medicinal plant since ancient times with unique properties [10,11]. Traditionally Calotropis is used with other medicinal or alone to treat common disease such as rheumatism, asthma, elephantiasis, fevers, diarrhea, indigestion, cough, cold, eczema, nausea, and vomiting. Calotropis gigantea L. is used traditionally in India to treat snake bite patients.
Naja naja is one of the most dangerous snake species causing high number of human deaths in both tropical and subtropical countries. Structural and Biological characterization of venom toxins has been conducting from the past to understand biochemical nature of venom toxin components [12-14]. Results of previous research showed that Naja naja cobra venom contains several proteins and peptides with enzymatic and non-enzymatic activities that belong to different groups including phospholipases A2 (PLA2), cardiotoxins and neurotoxins [15-17].
Indian cobra (Naja naja) also known as Asian cobra or spectacled cobra is a species of the genus Naja found in the Indian subcontinent and a member of the “big four”, the four species which inflict the most snake bites in India. A powerful post-synaptic neurotoxin and cardiotoxin present in Indian cobra’s venom acts on the synaptic gaps of nerves, paralyzing the muscles, leading to failure of respiratory system or cardiac arrest. Enzymes present in the venom components like hyaluronidase cause lysis and increase the spread of the venom [18-22].
To evaluate the protein activity, leaves of pink and white varieties has been collected and tested for protease inhibition and anti-venom activity.
Materials and Methods
Protease inhibition
Calotropis gigantea for the study were washed thoroughly in distilled water and air-dried. Buffer extract is prepared in about 500 ml conical flask by homogenizing 25 g of plant leaves in 100 ml of 0.1M phosphate buffer with pH 7.0 in an electrical blender. The homogenate was further mixed thoroughly by incubating the contents at room temperature in a rotary shaker for 30 minutes at 150 rpm. The slurry was then filtered through cheese cloth and the filtrate was centrifuged at 10,000 rpm for 15 minutes at 4°C for removing any cell debris that remains in the preparation. The clear supernatant obtained represented the crude extract, and was assayed for protease inhibitor activity.
Approximately 10 μl of plant isolate is mixed with 10 μl of protease (0.5 mg/ml) and spotted on to a strip of X-ray film. About 3 μl of protease was mixed with 10 μl phosphate buffer 0.l M (pH 7.0) as the control and spotted on to the X-ray film. Approximately 10 μl of plant isolate is mixed with 10 μl of protease (0.5 mg/ml) and 10 μl of PLA2 is also spotted on to a strip of X-ray film. The X-ray film is incubated for 10 minutes at 37°C. The film should be washed under tap water and dry the film so that the zone of gelatin hydrolysis by protease is to be visualized. If zone is not visualized, protein inhibition may be present in the tested sample.
PLA2 activity
In order to evaluate the phospholipase A2 activity, the indirect hemolytic activity was assayed. Phospholipase A2 enzyme of the Naja naja kaouthia (Indian cobra) venom were bought from Sigma Chemical Co. in lyophilized form and is used in the present experimentation. To isolate PLA2, C. m. Venom (0.9 g) was reconstituted in starting buffer (0.05 mol/1 Tris-HCl, 0.1 mol/l KOI, pH 8.3). Approximately 300 μl of packed sheep erythrocytes (1.2%) washed for four times with saline solution, containing 300 μl of 1:3 egg yolk solution in saline as a source of lecithin (1.2%) and 250 μl of 0.01 M CaCl2 (10 mM) solution were added to 25 ml of 1% (w/v) of agar at 50°C dissolved in 0.8% PBS pH 7.2. The mixture is to be applied to Petri plates (135×80 mm) and allowed to gel. Then, 4 mm diameter wells are to be made with gel puncture and the wells should be filled with 10 μl of samples. Experiment was carried out in triplicate. After 20 h of incubation at 37°C, the diameters of hemolytic halos were measured. In contrast, PBS solution did not induce haemolysis. When egg yolk was not added to the gels there was no hemolysis, indicating that hemolysis was only of the indirect type, i.e. due to PLA2 activity in this venom.
Protein-protein interaction
Protein interaction studies have been conducted by submitting PLA2 protein to string, a system protein network server. Input for the protein is provided as PLA2. The server is predicted with proteins of Oryctolagus cuniculus appears to be matched. The studies related to this protein networks is been conducted in the present experimentation.
Results and Discussion
Protease inhibition activity of white and violet varieties of Calotropis gigantea Linn., has been presented. Comparative studies on white and violet varieties have shown small variation. In trypsin inhibition, white variety has not shown inhibition but the violet variety has shown the inhibition at 10 μl concentration. In Protease K inhibition, white variety has not shown inhibition but the violet variety has shown the inhibition at 10 μl and 5 μl concentrations. In Chymotrypsin inhibition, white and violet varieties have not shown any inhibition (Figure 1).
Figure 2 shows the protein inhibition activity of N. naja combines with plant (white) variety. Both the venom and the combination of venom and plant protein showed protein inhibition.
Figure 3 has shown the activity of the selected plants with PLA2 protein. The protein component has shown good result (halo) with lowest zone formation in C. gigantea. The other plant extracts has not shown any activity with PLA2.
Borassus flabellifer shows different zone of inhibition based on the selected samples (7 mm to 12 mm) and not formed any haloes. About 10 μg/ml of PLA2 produced 6 mm diameter haemolytic halo. This shows that Naja naja venoms have the enzymes (phospholipase A2) that has the ability to lyse sheep RBC’s. Calotropis leaf extract (CLE) was capable of inhibiting phospholipase A2 dependant hemolysis of sheep. RBC’s induced by PLA2 in a dose dependant manner. Pouteria sapota leaf shown 7 mm and sap shown 8 mm of zone of inhibition and not formed any halo. Borassus flabellifer fruits and sprouts are also not shown any halo. This shows that Pouteria sapota and Borassus flabellifer has not shown any activity against snake venom. It is also confirmed that C. gigantea has shown good inhibition activity with PLA2. The plant C. gigantea extract has shown halos (PLA2 activity) and so the experiment has found good PLA2 activity against N. naja venom (Table 1).
Figure 4 has shown the protein-protein interaction with “PLA2”. The protein submitted to string, a functional protein association networks server with PLA2 as input has predicted link with many components associated with neurons. Most are dependent with network of proteins like GPR116 (G protein-coupled receptor), HIGD1B (HIG1 hypoxia inducible domain family, member 1B), DAAM2 (dishevelled associated activator of morphogenesis 2), PLA2G2E (phospholipase A2, group IIE ), SERPINC1 (serpin peptidase inhibitor, clade C (antithrombin), member 1), PLA2G4A (Cytosolic phospholipase A2 (cPLA2) (Phospholipase A2 group IVA)), Tumor necrosis factor, Precursor (TNF-alpha), Calmodulin (CaM), Apolipoprotein E Precursor (Apo-E), Insulin Precursor [Contains Insulin B chain;Insulin A chain], Thrombin Fragment, etc. These are relevant to circulatory and nervous system.
Plant genome contains set of sequences that codes many proteases which specify unrelated families showing similar properties. The biological roles of such proteases are mostly mysterious that expresses different diseased genes that have abnormal function [23]. Gene silencing, over expression and mutant alleles studies provided phenotypes for a growing number of proteases [24]. Proteases play a key role as regulators of a striking variety of biological processes like gametophyte survival, meiosis, embryogenesis, cuticle deposition, seed coat formation, stomata development, chloroplast biogenesis, epidermal cell fate, and systemic and local defense responses [25].
The six major classes of enzymes that show protease family are aspartic, cysteine, glutamic, metalloproteases, threonine, and serine, which are implicated in disease mechanism.
Protease inhibitors have great interest as possible targets for the development of novel therapies [26]. The present plant sample has shown protein inhibition based on experimental studies. Studies on phospholipid-hydrolysing enzyme, PLA2, have been conducting from the past few decades to understand the pathological and physiological importance.
PLA2 of Naja naja is also be inhibited forming hemolytic halo in blood agar containing egg yolk. Protein interaction studies of PLA2 have shown networks linked to components involved in circulatory and nervous system.
Calotropis gigantea acts as protease inhibitors containing plant compounds, applicable as targets in molecular therapies. Both white and violet verities of Calotropis gigantea have also shown good PLA2 inhibition activity. Most of the PLA2 proteins has network link with proteins involved in circulatory and nervous system.
Authors would like to thank management and staff of GITAM University and Dr. LB PG College, Visakhapatnam, India for their kind support in bringing out the above literature and providing lab facilities. Dr. D.G. Rao and Y.N.Sastry thankful to UGC (F.No. 42-643/2013 (SR)) for financial support.

Tables and Figures at a glance

Table 1


Figures at a glance

Figure Figure Figure Figure
Figure 1 Figure 2 Figure 3 Figure 4
Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Article Usage

  • Total views: 12063
  • [From(publication date):
    October-2013 - Jan 18, 2019]
  • Breakdown by view type
  • HTML page views : 8253
  • PDF downloads : 3810

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2019-20
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri and Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

ankara escort

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

pendik escort

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2019 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version