Incidence of Haemoparasites in Dogs in Ikwuano Local Government Area of Abia State

Nwoha RIO*, Daniel-Igwe G1, Onuekwusi GC2, Onyeabor A4, Igwe KC5 and Okah U6

1Department of Veterinary Medicine, Micheal Okpara University of Agriculture Umudike, Nigeria
2Department of Veterinary Pathology, Micheal Okpara University of Agriculture Umudike, Nigeria
3Department of Agricultural Extension, Micheal Okpara University of Agriculture Umudike, Nigeria
4Department of Veterinary Parasitology and Entomology, Micheal Okpara University of Agriculture Umudike, Nigeria
5Department of Agricultural Economics, Micheal Okpara University of Agriculture Umudike, Nigeria
6Department of Animal science, Micheal Okpara University of Agriculture Umudike, Nigeria

Abstract

Out of 503 dogs samples analyzed 104 were males and 303 females and out of these 359 (71.4%) were positive for haemoparasites. Babesia spp (94.4%) had the highest prevalence compared to Trypanosomes 5.0% and Anaplasma spp 45.0%. Most of the dogs had mixed infections of Babesia and Anaplasma spp. The prevalence was higher in females 76.3% compared to males 54.0%. Out of the areas sampled, MOUAU community had 20.0%, Oboro 91.4%, Oloko 8.0%, Ibeze 18.0%, Ariam 59.0% and Usaka 58.3%. The highest prevalence was recorded in December (90.0%), March (83.3%) and November (83.3%) whilst the remainder of the months had April (77.1%); May (70.0%); June (68.0%); July (63.3%) and August (53.1%). There were significant decreases in the PCV and Hb of the infected groups.

Keywords: Incidence; Haemoparasites; Dogs; Ikwuano; Babesia spp; trypanosome; Anaplasma spp; Abia State

Introduction

Several haemoparasites of dogs causes diseases of public health importance. Trypanosoma cruzi ranked the 4th greatest endemic disease in America, affecting not less than 16 to 18 million people and about a 100 million people at risk of the disease [1,2]. Apart from Trypanosomosis, dogs are constantly challenged by other haemoparasites such as Babesiosis and Anaplasmosis which causes anaemia. Babesiosis is one of the most important haemoparasites of animals [3], including dogs. The disease is found throughout Africa, Asia, Europe, the Middle East, North America and America where it affects dogs [4]. Recently, reports on the incidences of haemoparasites in dogs have been made in several continents of the world. Kamani et al. [5] recorded 42% prevalence at Vom, Nigeria, comprising mostly of Babesia canis 27%. Similarly, Barker et al. [6] recorded a prevalence of 44% in stray dogs in Australia comprising amongst others 20(51%) Anaplasma platys and 17(44%) Babesia vogeli. Therefore, paucity of information on incidences of haemoparasites of dogs in Ikwuano L.G.A. of Abia State prompted this research.

Materials and Methods

Ikwuano L. G. A. of Abia state is comprised of 5 clans with a total of 43 communities. Out of these, Oboro has 18, Ibeze 7, Oloko 8, Ariam 6 and Usaka 3. A total of 14 communities were randomly sampled in the study, and they include 6 communities in Oboro, 2 in Ibeze, 3 in Oloko, 2 in Ariam and 1 in Usaka. In the selected communities dogs were randomly sampled. One milliliter of blood sample was collected through the cephalic veins of dogs into a well labeled EDTA bottle according to Jamie [7] and kept in an iced packed cooler before transportation to the laboratory for analysis. The study commenced in March and ended in December 2012. The analysis was done using thin blood technique stained with Giemsa for both Babesia spp and Anaplasma spp. Trypanosomes were detected using both wet mount and Buffy coat techniques for accuracy. The Packed cell volume and haemoglobin concentrations of the animals were determined according to the method of Woo [8]. The number of samples collected was determined using the expression as described by Mahajan and In Garba [9].

\[N = Z^2 PQ/d^2 \]

N=no of samples to collect, Z=A constant degree of freedom, \(P \)=Percentage of published prevalence, \(Q \)=\((1-P)\), D=Confidence interval designated as 0.05.

Statistical analysis

The results obtained were analyzed using descriptive statistics [10] and presented as tables. The prevalence (P) of the diseases were calculated using the formula \(P = d/n \), where \(N= \)positive cases/ Total number of samples examined [11]. The prevalence of the diseases was expressed in percentage. The PCV and Hb were analyzed using ANOVA and the means separated with Duncan’s multiple range tests.

Result

In Table 1, out of the 503 samples analyzed, a total of 359 (71.4%) samples were positive for haemoparasites. Babesia species had the highest prevalence of 339 (94.4%); Anaplasma species 160(45.0%) and the least in trypanosomes 18 (5.0%). Amongst the different locations sampled, Oboro had the highest prevalence 320 (91.4%), followed by Ariam 17 (59.0%); Usaka 7 (58.3%); MOUAU community, 2 (20.0%) and Ibeze 9 (18.0%) while Oloko had the least prevalence 4(8.0%). In Table 2, the highest prevalence was recorded in December (90.0%); this was followed by the month of March (83.3%) and November (83.3%).

*Corresponding author: Nwoha RIO, Micheal Okpara University of Agriculture Umudike, Nigeria, Tel: 08030987115; E-mail: rosemarynwoha@yahoo.com

Received July 26, 2013; Accepted August 25, 2013; Published August 28, 2013

Copyright: © 2013 Nwoha RIO, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
June (68.0%); July (63.3%) while August recorded the least (53.1%) prevalence. Out of a total of 503 dogs sampled, 104 were males and 303 females. The prevalence of haemoparasites was higher in females 303 (76.3%) when compared to the males 56 (54.0%). In Table 3, there was a significant decrease in the PCV and haemoglobin concentration of animals infected with haemoparasites. Those with mixed infections of Babesia and Anaplasma species had a lower PCV and HBC as observed by Lako et al. [3] in his study on ruminants.

The high prevalence of haemoparasites (Table 2) recorded in March and November agrees with the findings of Obeta et al. [12] who detected highest prevalence of haemoparasites in December. This could be attributed to the dry weather conditions allowing free roaming and spread of diseases in animals. However, this was in contrast with the findings of Samdi et al. [13], who observed high prevalence of haemoparasites during rainy season. The relatively low prevalence of haemoparasites in the months of June, July and August could be attributed to the rainy weather conditions apparently not suitable for spread of vector transmitted disease. In dry season, there is free roaming of animals which allows easy spread of disease through contact infection. This situation however is abridged through confinement of animals during rainy season. The relatively low prevalence of haemoparasites during rainy season could signify incidental transportation of infected dogs from endemic areas. Similarly, it could mean low prevalence of the vector tse-tse within the area. Nevertheless both Babesia and Anaplasma spp are still very important haemoparasites of dogs commonly transmitted through bites from infected ticks and dogs often are exposed to ticks by their natural social behavior. Free roaming dogs are more predisposed to ticks infestation than in-house pets; as such dogs easily pick up infection by contact with infected dogs. Although the benefit of in-house pets could be played-out, in the absence of hygienic practices in kernel. Hence government should provide veterinary clinics in communities along side human health centers for comprehensive human and animal health management in the light of one health one world initiative program. Some of the dogs had mixed infections of Babesia and Anaplasma species as observed by Lako et al. [3] in his study on ruminants.

Discussion

Apparently there was a substantial prevalence 359 (71.4%) of Trypanosomes, Babesia and Anaplasma species in dogs in Ikwuano L.G.A. of Abia state as observed from the result of the study (Table 1). This was higher than 23.33% observed by Obeta et al. [12] in Abuja. This emphasizes the need for proper health management and Veterinary care of dogs within this area. Trypanosomes are particularly of interest considering the acute nature of the disease compared to babesiosis and anaplasmosis in dogs. The low prevalence recorded in this study could signify incidental transportation of infected dogs from endemic areas. Similarly, it could mean low prevalence of the vector tse-tse within the area. Furthermore both Babesia and Anaplasma spp are still very important haemoparasites of dogs commonly transmitted through bites from infected ticks and dogs often are exposed to ticks by their natural social behavior. Free roaming dogs are more predisposed to ticks infestation than in-house pets; as such dogs easily pick up infection by contact with infected dogs. Although the benefit of in-house pets could...
import of haemoparasites in dogs demands proper surveillances to enforce early control measures.

In conclusion, some species of *Trypanosomes* in dogs are also zoonotic, therefore the need for continuous surveillances on the prevalence of haemoparasites in our communities as a control strategy. The result of such studies would aid Veterinary diagnosis and prognosis of diseases in dogs within the area. Furthermore, awareness programs should be mapped out in communities to encourage dog owners to seek veterinary services in the management of their dogs for effective disease control.

Acknowledgement

The authors of this work wish to acknowledge the Tertiary Education Trust fund of Nigeria for its contribution in the sponsorship of this research.

References