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Introduction
What is signal and what is noise? That is the question of health 

and medical data processing. An interesting subjective answer is: “one 
man’s noise is another man’s signal”. But most researchers in this area 
are looking for an objective answer that can separate signal from noise 
based on an objective metric. Most people believe that the metric 
should be a statistical measure because the noise has high randomness, 
and the signal has spatial-temporal structure. Alternatively, if a proper 
linear transform is applied to the noise-corrupted data, then signal can 
be mapped into a sub-space, and noise is still uniformly distributed in 
the whole vector space. Therefore, signal is compressible, but noise is 
not. If the transform is a unitary transform, e.g. Fourier transform, then 
the noise variance remains the same. Based on this assumption, most of 
the de-noising processes have three generic steps: 1. Transform the data 
to a transform domain, e.g. spatial/temporal Fourier domain, wavelet 
domain… etc.; 2. Truncation in the transform domain by removing/
suppressing noise-only or noise-dominate modes; 3. Inverse transform 
to obtain the de noised data. However, there is still no generic method 
to find the optimal truncation threshold. Application specific/empirical 
criteria are usually applied. One of the widely-used linear transforms in 
signal processing and artificial intelligence is the principal component 
analysis (PCA), a.k.a. Karhunen-Loeve transform, Hotelling transform 
and proper orthogonal decomposition. It is an adaptive unitary 
transform, which is optimal in the least square sense [1]. Numerous 
empirical eigenmode selection metrics were proposed, e.g. knee point, 
parallel analysis … Again, there is no well-established generic threshold 
selection rule based on solid statistical theory [1]. 

Recently, a new threshold selection method was proposed, and it 
has the potential to be a generic method independent of any specific 
application/data type [2,3]. This new method has only one assumption: 
the data matrix is a sum of a low-rank signal matrix and a full-rank 
noise matrix. Then the new eigenmode selection method was derived 
based on the random matrix theory. 

The so-call random matrix is a matrix with random entries, e.g. a 
noise matrix. Physicist proposed this concept in the 1950’s, and utilized 
it to explain the gap in nuclear energy levels [4]. Theoretical physicists 
worked with RMT since then [5], but did not study the most important 
feature of the RMT-the empirical eigenvalue probability distribution 
function (PDF). Two mathematicians from the Russian school, 
Marcenko and Pastur [6], first published the empirical eigenvalue 
PDF (so-called MP-law) in 1967. It was unknown to the western 
math society, until the late 1990’s [7,8]. The MP-law states that: if the 
data matrix is a random matrix with each entry an independent and 
identically distributed (IID) random variable, then the eigen values 
(λ) of the corresponding Wishart matrix asymptotically follow the 
following probability distribution function:
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Where α=r/n, 2 2(1 )λ σ α± = ± , r and n are two dimensions of the 
random matrix, σ is the noise standard deviation. Please note that the 
MP-law distribution function is continuous but not differentiable. λ+  
λ− and are theupper and the lower bound. 

In 1999, two physicists, Sengupta and Mitra [9], published their 
results when both signal and noise appear in the data matrix, i.e., if the 
data matrix is a sum of a low-rank signal matrix and a full-rank noise 
matrix, then the eigen values corresponding to the null-space of the 
signal matrix still follow the MP-law [9]. This important resultimplies 
the following two points: 1) the PCA can map the data into two sub-
spaces: the signal dominated sub-space and the noise-dominated sub-
space; 2) the eigenvalues of the noise-dominated sub-space still follow 
the MP-law. Therefore, the noise-dominated sub-space can be found 
by identifying which eigenvalues follow the MP-law. This is a generic 
approach to select the eigenmode threshold only based on statistical 
property. Several theoretical studies proposed this approach, but none 
of them demonstrated the effectiveness of this approach using data 
collected in the real-world [10-12].

The reason is simple but subtle: the MP-law is very sensitive to the 
correlation in the noise. All electrical circuits cannot have ideal impulse 
response function (Dirac delta function). Therefore, even random 
fluctuations show some degree of correlation, so does the noise in all 
raw data collected by sensors. Hence, there is no such a thing called 
IID noise in the real-world. Another layer of complexity comes from 
the construction of the data matrix: the noise may have correlation 
along both the row dimension and the column dimension. Therefore, 
the noise correlation in the data matrix is a 4th order tensor. There is 
no closed-form expression of empirical eigenvalue PDF of a random 
matrix with a generic noise correlation tensor.

Even the complex noise correlation is problematic; the MP-law 
based method can be salvaged. When the noise is non-IID, eigen values 
corresponding to the noise-only eigenmodes follows the MP-law with 
modified parameter(s). Intuitively, because of the noise correlation, the 
degree of freedom in the noise data should be reduced to a lower value, 
i.e. parameter n in Equation [1] should be modified to n′<n. Then, the
noise-dominated eigenmodes can be identified by maximizing the
goodness-of-fit between the eigenvalues and the MP-law with modified 
parameter n [2,3]. This is so-called the MP-law method. The new
method has been proven to be effective in the dynamic MRI data using
parallel imaging reconstruction, which is corrupted by complex non-
IID noise [13,14]. Potentially, the MP-law method can be utilized as a
generic PCA eigenmode selection metric.

The recently developed MP-law method should be regard as 
an engineer’s solution of the PCA eigenmode selection problem. 
It is a practical approach to answer the ubiquitous question: “what 
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is information and what is noise”, whenever PCA is utilized. Its 
effectiveness has been tested using medical imaging data. But there is 
a missing link between the correlation tensor and the accuracy of the 
MP-law method. We hope mathematicians will bridge up the missing 
link in the near future, and hence, provide a more powerful random 
matrix toolbox for the health and medical data processing. 
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