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Introduction
There are various situations in which it is desirable to separate 

bioparticles, such as DNA, viruses, bacterial or mammalian cells from 
background [1]. Here, we focus on the isolation of rare mammalian 
cells, from cell mixtures or body fluids for cancer detection and 
individualized medicine using electrophoresis (DEP) [2]. Isolating 
rare cells is challenging, mostly due to their low number compared to 
background cells. For example, in screening for circulating tumor cells 
(CTCs) to detect cancer, there are only a few CTCs per mL of blood, 
which includes approximately a billion red blood cells and a million 
white blood cells. Specifically, it has been reported that there are less 
than 5 CTCs per 7.5 ml blood, detectable using immunomagnetic 
labeling in patients diagnosed with metastatic breast cancer [3]. 
Moreover, in some applications, rare cells are similar in size with 
background cells, which make rare cell isolation difficult. 

Existing cell sorting approaches, such as fluorescence activated cell 
sorting (FACS) [4], magnetic activated cells sorting [5], and chemically 
functionalized pillar-based microchips [6], have shown promise as 
techniques that isolate rare cells, based on known receptors expressed 
on the surface of the membrane. For example, cancer stem cells (CSCs) 
are a rare population of cancer cells that have the ability to transplant 
a new tumor from an existing one. CSCs are thought to be responsible 
for the metastatic properties of tumors. In the case of pancreatic cancer, 
less than 1% of cancer cells expressed positive to specific biomarkers 
and showed significantly high tumorigenic potential, indicating 
they are CSCs [7]. Although a powerful technique, biomarker-based 
methods rely upon surface marker expression labeling, which is time-
consuming, and requires special training to implement. The use of 
biomarkers also requires a prior knowledge, which is not yet available 
for all cell types. Moreover, irreversible binding of particles to the cell 
membrane can permanently disturb the functionality of the cell during 
isolation, making it difficult to do post-studies [8]. 

Dielectrophoresis (DEP) is an alternative, noninvasive technique 
that eliminates extensive sample preparation (no antibody labeling, one 
needs only to prepare a single sample) and provides a high selectivity 
for separating rare cells. DEP is the motion of a polarizable particle in 
a suspending medium due to the presence of a non-uniform electric 
field [9]. As opposed to other techniques that rely on information at the 
membrane surface, DEP can noninvasively sort populations through 
differences within the interior of cells, as well as their exterior. DEP 
has been used for the isolation of several rare cell types including 
separation of human breast cancer cells [10-16], human leukemia 
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cells [17], cervical carcinoma cells [18], and malaria-infected cells [19] 
from blood, HL-60 cells from peripheral blood mononuclear cells 
[20], human breast cancer cells from normal T-lymphocytes and from 
CD34+ hematopoietic stem cells [21,22], enrichment of CD34+ stem 
cells from bone marrow and peripheral blood [23], and from peripheral 
blood stem cell harvests [24], separation of neuroblastoma cells from 
glioma cells [25], colorectal cancer cells from normal epithelial cells 
[26], osteoblast-like cells from a heterogeneous population [27], 
and putative stem cell population from adipose tissue derived cell 
suspension [28]. Cell isolation has been done through both batch 
separation [11-14,16-28], in which the rare cells population is trapped 
due to positive DEP force, while the background cells pass through 
the microdevice without trapping, and continuous separation [10], in 
which rare cells continuously separate from background cells.

In conventional DEP techniques, metallic microelectrodes with 
various geometries, such as interdigitated [11,13,14,20-22,24,28], 
castellated [12,17,23,29], oblique [10], spiral [19], circular [18,25], ring 
shape [27], and wedge shape [26], are patterned on a microfluidic device 
using conventional lithography techniques. Our group developed a 
DEP-based technology known as contactless dielectrophoresis (cDEP), 
which replaces metallic electrodes by fluidic electrode channels, filled 
with a high conductivity fluid [30,31]. Our approach with cDEP 
capitalizes on the sensitivity of traditional DEP, while eliminating 
challenges such as bubble formation, electrode delamination, expensive 
fabrication, and electrode-sample contamination. The absence of 
electrochemical contamination makes cDEP an ideal “isolate-and-
culture” platform to investigate the biological processes of a target cell 
type, especially rare cells, in a sterilized environment. cDEP has been 
used to isolate prostate CSCs from normal cancer cells [32], cancer cells 
from blood cells [15,16], live cells from dead cells [33], and different 
stages of breast cancer cell lines [34].

In general, differences in dielectric properties of cells come from 
differences in their size, viability, membrane integrity and morphology, 
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surface protrusions, fine surface features, cytoskeleton structure, and 
internal composition, such as nucleus to cytoplasm (N/C) ratio [35]. 
The cell membrane specifically acts like a dielectric between two 
conducting media. Similar to a capacitor, the specific capacitance of a 
cell depends on the cell membrane’s surface. Smoother cells have lower 
specific membrane capacitance, Cmem, in contrast to cells which have 
complexities on their membrane such as protrusions, blebs, folding, 
and microvilli [36]. The Cmem is reduced if there is an increase in the 
membrane thickness or change in the intramembrane components, 
which affects the cell polarizability. Interfacial polarization happens 
due to the movement of positive and negative charges towards the cell 
sides facing the electrodes, depending on the location of electrodes, 
and causes forming aggregation of interfacial charges [37]. The 
interfacial polarization of a membrane surface can be affected by 
nucleus, endoplasmic reticulum, and mitochondria, as well as cell 
insulating bodies and structures, such as protein cytoskeleton and 
lipid membranes [35]. These characteristics have enabled researchers 
to isolate cells by exploiting differences in their membrane properties, 
such as membrane protrusions [38] and membrane conductivity [39], 
as well as the membrane skeleton [38,40].

Here, we present some of the important applications of DEP for 
enriching and isolating rare cells.

Cancer Cells from Blood Cells
Isolating cancer cells from blood cells is essential in early cancer 

detection and monitoring therapeutic outcomes [41]. There are several 
differences in surface morphology and size of cancer cells and blood 
cells, which make it possible to isolate them utilizing DEP [10-14,16-
18]. For example, using a membrane-specific area parameter, φ, one 
can quantify subtle variances between cells due to differences in 
membrane morphology [13]. φ is the ratio of the actual membrane 
area to the membrane area that would be required to cover a smooth 
cell with the same radius, and can be used to quantify the amount of 
surface foldings and protrusions, as well as features such as microvilli, 
villi, ruffles, ridges, and blebs [13], on the membrane. A smooth cell 
has a membrane capacitance of 9 mF/m2 [42]. For normal cells, such 
as T-lymphocytes, φ has been reported to be close to 1, however for 
cancerous cells having more surface protrusions, φ can be up to around 
4 times higher [43]. DEP can also be combined with other cell sorting 
techniques, such as multi-orifice flow fractionation (MOFF) [10], to 
isolate cancer cells from blood cells, by taking advantage of higher 
throughput of MOFF and higher sensitivity of DEP [10].

Different Stages of Cancer Cells 
It has also been demonstrated that cancerous and normal cells have 

different electrical properties. Oral squamous cell carcinomas have 
distinctly different electrical properties than more normal keratinocyte 
populations [44], and non-cancer-derived oral epithelial cells [45]. In 
another study, it was shown that normal, pre-cancerous, and cancerous 
oral keratinocytes have distinct electrical properties [46]. Additionally, 
transformed and non-transformed rat kidney cells [47], malignant 
human breast cancer epithelial cells and benign breast epithelial cells 
[34,48], and healthy and infected erythrocytes have been reported to 
have different electrical signature [49]. We demonstrated that different 
stages of breast cancer cell lines can be sorted based on cells dielectric 
properties [34]. We also showed that Cmem increases in mouse ovarian 
surface epithelial (MOSE) cells as the stage of malignancy advanced 
from 15.39 ± 1.54 mF/m2 for a non-malignant benign stage to 26.42 ± 
1.22 mF/m2 for the late, aggressive stage [50]. These differences are the 
result of morphological differences due to changes in the membrane 

capacitance, associated with the complexity in the surface morphology, 
specifically, the density of complex features and cytoskeleton structure. 

Stem Cells and Non-stem Cells 
Stem cells are rare cell populations with the ability of self-renewal, 

as well as generating mature tissue cells through differentiation. 
Isolating, characterizing, and manipulating these cells have a wide 
range of applications, including regenerative medicine and cancer 
treatment. It has been shown that dielectric properties of stem cells are 
different from differentiated cells [51]. Using DEP, the progenitor cells 
were isolated from the stromal vascular fraction, which includes cell 
debris, erythrocytes, and nucleated cells, based on differences in their 
density, morphology, and size [52]. Moreover, it has been reported 
that the specific membrane capacitance of breast cancer cells and 
hematopoietic CD34+ stem cells are different, 23.0 ± 7.1 and 10.2 ± 1.5 
mF/m2, respectively, and these cells can be isolated accordingly, using 
dielectrophoretic field-flow-fractionation (DEP-FFF) [22].

Cancer Stem Cells and Normal Cancer Cells 
CSCs can be considered as the most relevant cancer therapeutic 

target, and their isolation is the first step towards understanding 
their role in the pathogenesis and progression of cancer to improve 
specific cancer therapies [53]. Up until recently, no one has studied 
whether there are bioelectrical differences between CSCs and their 
counterpart. Our group showed that prostate CSCs have different 
dielectric properties in comparison to non-CSCs, which can be used 
for enrichment [32]. 

Stage of differentiation changes the cells protein cytoskeleton, 
which consequently changes the mechanical and electrical properties 
of cells at different stages of differentiation [35]. As an example, the 
differentiation of the erythroleukaemia cells changes the cell surface 
characteristics of the surface from having numerous microvilli and 
filopodia to appearing smooth and discoid, which are characteristics 
of mature cells [40]. Differentiation also increases the integrity of 
the spectrin in cytoskeleton and increases structural protein content 
of the membrane, causing a decrease in the membrane leakage and 
membrane fluidity [40].

Cells’ organelles, e.g. endoplasmic reticulum, nucleus, and 
mitochondria, change during differentiation of cells and can affect 
their DEP properties. As an example, differentiation, transformation, 
and tumorigenicity of cells make a significant change in mitochondrial 
membrane potential [54]. Carcinoma cells have higher mitochondrial 
membrane potential than normal cells [55-57]. Based on their 
mitochondrial membrane potential, cells can be sorted as CSC>cancer 
cells>normal epithelial cells [54]. Moreover, N/C ratio decreases by cell 
differentiation and maturity [8], and changes the effective conductivity 
and permittivity of cells. For instance, limbal epithelial stem cells have 
a higher N/C ratio (=0.82 [58]) than peripheral corneal epithelial cells 
(=0.17 [59]), [8]. Human embryonic stem (hES) cells have typically 
higher N/C ratio than ordinary somatic cells, which affects their 
dielectric properties and consequently, can be used to separate these 
cells.

In summary, the differences in dielectric properties of cells which 
stem from dissimilarities in cells size, morphology, nucleus/cytoplasm 
ratio, nucleic acid content, surface charge, and charged cytoplasmic 
molecules, can be used not only to monitor changes of cells, but also to 
electrically isolate rare cells from biosamples. Utilizing DEP eliminates 
the need of labeling cells through their membrane proteins, which 
saves time and expense. Cells can be used after DEP isolation for 



Citation: Salmanzadeh A, Davalos RV (2013) Isolation of Rare Cells through their Dielectrophoretic Signature. J Membra Sci Technol 3: e112. 
doi:10.4172/2155-9589.1000e112

Page 3 of 4

Volume 3 • Issue 1 • 1000e112
J Membra Sci Technol
ISSN:2155-9589 JMST, an open access journal

culturing and molecular analysis. This has crucial applications, such 
as early cancer detection, performance monitoring of cancer therapy, 
regenerative medicine, and cell characterization for individualized 
medicine. 
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