Lead and its Effects on Cytochromes P450

Lowry JA1,2*, Pearce RE1,2, Gaedigk A1,2, Venneman M1,2, Talib N1, Shaw P1, Leeder JS1,2 and Kearns GL1,2

1Department of Pediatrics, University of Missouri – Kansas City School of Medicine, Kansas City, MO, United States
2Division of Pediatric Pharmacology and Therapeutic Innovation, The Children’s Mercy Hospital, Kansas City, MO, United States
3Department of Pediatrics, University of Missouri – Kansas City School of Medicine, Kansas City, MO, United States

Abstract

Background: The adverse effects of lead on heme biosynthesis and production of anemia are well known. Lead may disrupt the normal activity of other hemoproteins, such as cytochromes P450 (CYP) which are responsible for drug metabolism. While data in animals suggest a decrease in CYP function with lead exposure, there is little data in humans.

Methods: After IRB approval, consented patients with asymptomatic, low to moderate level (10 mg/dl to 44 mg/dl) lead poisoning were assessed for CYP1A2 and CYP2D6 activity at diagnosis, 1 month, 2 months and after lead level was less than 10 mg/dl. Low doses of caffeine (CYP1A2 activity) and dextromethorphan (DM) (CYP2D6 activity) were administered and urine collected for 12-24 hours at each visit. Lead levels, free erythrocyte protoporphyrin, and iron studies were performed as well. A mixed linear model was used to analyze the data. CYP2D6 genotyping was performed using PCR techniques.

Results: Eleven out of the sixteen eligible children (7 males, 4 Caucasian, average age: 33 months) completed the study. Average time to complete the study was 20 months. Seven had lead levels between 10-25 mcg/dl. Eight had elevated EPP. None had low iron levels. A random intercepts mixed linear model was fit to the data. No statistical significance was found for CYP1A2 or CYP2D6 metabolic ratio related to the lead level, change in lead level or time.

Discussion: Lead was found to have no effect on the CYP drug metabolizing enzymes at low blood lead levels. Lead has been shown to effect multiple sites on the hemoglobin synthesis pathway resulting in elevated EPP at lead levels >10 mg/dl. However, threshold for decreased hemoglobin levels in children is judged to be approximately 40 μg/dl. Thus, cytochromes may not be affected until higher lead levels are seen. The size of the study limits generalizability.

Conclusion: Based on this study, no changes in drug treatment for children with low blood lead levels are necessary. However, further studies may be needed to assess the effect from higher blood lead levels.

Keywords: Cytochromes P450; Central nervous system; Blood lead levels

Background

Despite the knowledge of clinical effects of lead, there has been a recent resurgence in concerns relative to its biochemical toxicity. Absorption of ingested lead from water, food, or lead-contaminated dust is the major source of exposures in non-occupationally exposed individuals. Following absorption, lead is distributed to two main compartments: the readily exchangeable “pools” represented by blood and soft tissue (including the brain) and a “deep tissue reservoir” represented by bone [1]. Over 95% of blood lead is contained within the erythrocytes [2]. While acute lead exposure (e.g. that seen after ingestion of metallic lead) is limited in distribution to the aforementioned readily exchangeable pools, chronic, persistent, low-level exposure; such as that associated with non-occupational exposure, will result in accumulation of lead. This, in turn, has the potential for producing chronic, subclinical lead poisoning capable of disrupting normal protein synthesis (e.g., heme) and altering cognitive and/or neurobehavioral function.

Only a small fraction of children with chronic lead poisoning are thought to exhibit clinically discernable signs and symptoms suggestive of toxicity. The gastrointestinal tract and the central nervous system (CNS) are the most likely systems to be involved. Children may exhibit abdominal pain, anorexia, nausea, vomiting, and constipation with blood lead levels as low as 20 mcg/dl. CNS disturbances (e.g., hyperactivity, behavioral disorders), hearing loss and cognitive impairment may be seen in association with blood lead levels less than 7.5 mcg/dl [3]. In association with high (i.e., >100 mcg/dl) blood levels, children may exhibit signs of increased intracranial pressure, seizures, and coma (e.g., lead-encephalopathy). The clinical effects are a result of disruption in normal cellular intermediary metabolism including inhibition of mitochondrial oxidative phosphorylation and impaired membrane transport consequent to alterations of sodium, potassium, and calcium ATPases [4]. Lead also alters calcium metabolism by impairing intracellular messenger actions [5].

The cytochromes P450 represent a superfamily of heme-containing proteins that catalyze the biotransformation of many lipophilic endogenous substances (e.g., steroids, fatty acids, fat-soluble vitamins, prostaglandins, leukotrienes, and thromboxanes) and exogenous compounds (e.g., drugs, pesticides, and environmental contaminants). In humans, 57 active CYP genes have been found which are divided into 18 families [6]. P450s important in human drug metabolism are...
CYP2D6 genotyping

Blood was obtained at admission for isolation of genomic DNA. The DNA samples were subsequently genotyped for CYP2D6 using previously established PCR-RFLP methods [12]. The following 16 allelic variants were included in the analysis: CYP2D6*2, *3, *4, *5, *6, *7, *8, *9, *10, *11, *17, *29, *40, *41, *45, and *46, as well as *1×2, *2×2 and *4×2 gene duplications. Additional information can be found at the CYP2D6 nomenclature web page (http://www.cypalleles.ki.se/).

CYP1A2 and CYP2D6 in vivo phenotyping

Subjects were assessed for CYP1A2 and CYP2D6 activity at diagnosis, 1 month and 2 months after enrollment, and after blood lead were less than 10 mg/dL using a protocol previously described [13]. Each subject was given a single oral dose of caffeine (CAF) and dextromethorphan (DM) (3.5 mg/kg and 0.3 mg/kg, respectively) followed by 90 to 120 milliliters of tap water and/or clear fruit juice. Subjects were permitted to consume their normal, age-appropriate diet around the time of the study drug administration and through all sample collection periods. Spontaneously voided urine was collected for 12-24 hr after administration of CAF and DM. For infants who were not toilet trained, a special fiber-based diaper (Tushies®, Tender Care®) proven suitable for urine collection and reliable for the quantitation of DM and CAF was used. Urinary caffeine and its metabolites (CYP1A2; Figure 1) and urinary dextromethorphan and its metabolites (CYP2D6; Figure 2) were determined by HPLC. CYP2D6 activity was assessed by the metabolic ratio of DM/DX whereas CYP1A2 activity was assessed by the metabolic ratio of AFMU+1X+1U/1, 7U as previously described [14].

Statistics

A random intercepts mixed linear model was fit to the data. The urinary metabolic ratio for CYP1A2 and CYP2D6 was examined in association with change in blood lead level from baseline and longitudinally over time. The significance limit accepted for all statistical analyses was α=0.05.

Results

Thirty children were enrolled in the study. Fourteen failed screening, and 11 out of the 16 remaining eligible children completed the study over an average time of 20 months (SD=12.5 months). Initial blood lead levels ranged from 16-32 mcg/dL (Mean 22 ± 5.2 mcg/dL). Eight of the 11 participants completing the study had elevated EPP and none had a lower serum iron level.

Ten subjects had a CYP2D6 genotype predictive of an extensive metabolizer phenotype while one had a genotype that predicted ultrarapid metabolism (Table 1). We also assigned activity scores to each CYP2D6 genotype (Table 1) which ‘facilitates’ phenotype prediction from genotypic data [15] and provides an additional covariate which to use in the evaluation of lead effects on CYP2D6 activity.

No statistically significant associations were found for either the CYP1A2 or CYP2D6 urinary metabolic ratio examined as a function of either change in blood lead level from baseline (p=0.44 and p=0.69, respectively) or subject age. Likewise, no statistical significance was
found for the association of either CYP2D6 or CYP1A2 and time (Figures 3 and 4).

Discussion

The potential for a detrimental interaction between lead and the cytochromes P450 is reflected by the previous work in animal studies [8-10]. Goldberg et al. [8] injected mice intraperitoneally with lead acetate, and P450 activity was measured 20 hours after injection. In this study, P450 activity was reduced to 50-60% of control levels within 24 hours after injection. However, the study showed that a decrease in P450 activity may have been, in part, due to inhibition of P450 gene transcription that is unrelated to the effects of lead on heme biosynthesis. Degawa et al. [10] evaluated the effects of lead on the expression of CYP1A2. They found that lead had an inhibitory effect on the microsomal activity for CYP1A2-dependent biotransformation of aromatic amines, as well as on the expression of both mRNA and protein of the enzyme in the rat liver.

Few human studies have evaluated the potential impact on the activities of cytochromes P450. In addition to the study previously described [11], only a handful of studies have further attempted to elucidate the effect of lead on CYP450 activity [16-20]. In two children with clinical as well as biochemical manifestations of acute lead intoxication, antipyrine half-lives were significantly longer than normal, and chelation therapy led to restitution toward normal [16]. Saenger et al. [17] evaluated the inhibitory effects of lead on the metabolism (CYP3A4 pathway) of cortisol to 6-beta-hydroxycortisol in children with mild to moderate increases in blood lead concentrations and found decreased urinary excretion of 6-beta-hydroxycortisol in those children with elevated urinary lead excretion.

In this study, the activities of CYP1A2 and CYP2D6 were not altered from baseline as lead levels decreased in children with low blood lead levels. Evidence of biochemical lead toxicity and disruption of normal heme biosynthesis reflected by elevated EPP values at blood lead levels >10 mcg/dl may not be generalized as relates to the function of other critical hemoproteins which are known to be altered in lead intoxication [21].

As reflected by the data illustrated in Figure 4, there was a non-significant trend for CYP1A2 activity to increase over time in the majority (i.e., 10 of 11 subjects), which was independent of the blood lead concentration. This increase in CYP1A2 activity was, however, expected based upon the known patterns of ontogeny for the maturation of this particular enzyme in humans. CYP1A is not present in fetal and newborn tissues and is the last isozyme to be expressed in the human liver [22]. It begins to increase when infants are 3-6 months of age and reaches 50% of adult activity by one year of age [23]. Assessing clearance of the CYP1A2 substrate theophylline by measuring metabolite ratios over time suggests that full maturation of CYP1A2 activity occurs by 3 years of age [24]. Other environmental factors, such as cigarette smoking, can increase CYP1A2 activity [25]. These factors or the potential effects of concomitantly ingested foods or drugs were not evaluated in the present study given their inherent variability with respect to exposure and the relatively small study population.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age (months)</th>
<th>Sex</th>
<th>Race</th>
<th>Duration (months)</th>
<th>Lead Level</th>
<th>EPP*</th>
<th>Iron*</th>
<th>CYP2D6 genotype</th>
<th>CYP2D6 AS**</th>
</tr>
</thead>
<tbody>
<tr>
<td>M01</td>
<td>16</td>
<td>M</td>
<td>C</td>
<td>44</td>
<td>17</td>
<td>13</td>
<td>52</td>
<td>2+22</td>
<td>3</td>
</tr>
<tr>
<td>M03</td>
<td>84</td>
<td>F</td>
<td>AA</td>
<td>39</td>
<td>26</td>
<td>126</td>
<td>29</td>
<td>19</td>
<td>1.5</td>
</tr>
<tr>
<td>M06</td>
<td>16</td>
<td>F</td>
<td>AA</td>
<td>14</td>
<td>22</td>
<td>38</td>
<td>88</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>M08</td>
<td>21</td>
<td>M</td>
<td>H</td>
<td>11</td>
<td>17</td>
<td>38</td>
<td>81</td>
<td>14+2</td>
<td>1</td>
</tr>
<tr>
<td>M09</td>
<td>27</td>
<td>M</td>
<td>C</td>
<td>18</td>
<td>26</td>
<td>68</td>
<td>150</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>M12</td>
<td>48</td>
<td>F</td>
<td>AA</td>
<td>28</td>
<td>17</td>
<td>18</td>
<td>114</td>
<td>129</td>
<td>1.5</td>
</tr>
<tr>
<td>M13</td>
<td>15</td>
<td>M</td>
<td>C</td>
<td>28</td>
<td>32</td>
<td>138</td>
<td>49</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>M15</td>
<td>48</td>
<td>F</td>
<td>H</td>
<td>15</td>
<td>27</td>
<td>40</td>
<td>78</td>
<td>241</td>
<td>1.5</td>
</tr>
<tr>
<td>M21</td>
<td>17</td>
<td>M</td>
<td>AA</td>
<td>9</td>
<td>16</td>
<td>38</td>
<td>78</td>
<td>141</td>
<td>1.5</td>
</tr>
<tr>
<td>M24</td>
<td>18</td>
<td>M</td>
<td>C</td>
<td>11</td>
<td>22</td>
<td>5</td>
<td>113</td>
<td>245</td>
<td>1.5</td>
</tr>
<tr>
<td>M28</td>
<td>48</td>
<td>M</td>
<td>AA</td>
<td>8</td>
<td>21</td>
<td>39</td>
<td>114</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1: Demographics of subjects who completed study. *Blood concentrations noted at time of enrollment. Mean lead level 22.1 ± 5.2 mcg/dl. Mean EPP 86 ± 35 mcg/dl. Mean iron level 86 ± 35 mcg/dl. EPP indicates erythrocyte protoporphyrin; CYP2D6, Cytochromes P450 2D6; C: Caucasian; AA: African American; H: Hispanic; AS: activity score. **AS is a value is assigned to each allele according to its activity. The sum of values for both alleles is the AS. The value of the AS has a predictive phenotype. (AS 0=Poor metabolizer, AS 0.5=Intermediate metabolizer, AS 1-2=Extensive metabolizer, and AS >2=Ultra metabolizer).

Figure 4: CYP1A2 activity change for each subject over duration of study. There is a non-statistical trend to increase over time.

cohort. Children in this study showed similar maturation processes as described in the literature, but the study did not reach statistical significance due to interindividual variability. In addition, the children in this study were above the age for which adult activity of the enzyme is expected.

Caveats associated with our preliminary findings reside with the rather small size of our study cohort relative to the inherent variability expected with the biological effects of lead and/or the potential role of polymorphic expression of CYP2D6 or development on modulating these effects. While our data do support an apparent lack of effect for low level lead exposure on the activity of two specific cytochrome P450 isoforms, these findings cannot be generalized to what might occur with other drug metabolizing enzymes and in patients who may have higher blood lead levels (e.g., acute toxicity). Substantiation of our findings and further exploration of the effects of sub-clinical lead toxicity on drug biotransformation will require larger studies of children with various ages where duration and extent of lead exposure can be more accurately measured. In addition, previous studies have suggested an effect of lead on CYP3A4 activity [17]. While our study did not assess the activity of this particular P450 isoform, its examination in future studies is warranted.

Conclusion

Our preliminary data suggest that in children with low blood lead levels, lead-associated alteration in biotransformation of therapeutic drugs that are substrates for CYP1A2 and/or CYP2D6 would not be expected.

References