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Abstract
Adiponectin and leptin are two adipocytokines originally found to be secreted mainly by white adipose tissue 

(AT) in mammals. They are involved in the control of energy homeostasis, body weight, lipid metabolism, and 
insulin sensitivity. The interplay between these two hormones was exclusively studied in mammals and yielded 
conflicting results. In birds, adiponectin and leptin are expressed not only in AT, but also in liver (for leptin) and in 
a wide range of tissues (for adiponectin). However, their physiological roles and relationship are still unknown. The 
aim of the present study was to investigate the effect of recombinant chicken leptin on adiponectin gene expression 
in three metabolically important tissues (liver, hypothalamus, and muscle). The effect of gender and cerulenin, the 
natural fatty acid synthase inhibitor which has been shown to share some molecular mediators with leptin, were also 
evaluated. Females exhibited significantly (P<0.05) higher levels of adiponectin mRNA in muscle and the liver, but 
not in the hypothalamus compared to male broiler chickens. Regardless of gender, muscle was found to contain the 
highest amount of adiponectin mRNA followed by the liver and hypothalamus. Continuous infusion of leptin (8 μg/
kg/h) for 6h in 3-wk-old broiler chickens significantly (P<0.05) increased plasma leptin levels, reduced food intake, 
and downreglated adiponectin gene expression in liver and muscle compared to the control. Cerulenin treatment (15 
mg/ml) at different times significantly (P<0.05) reduced food intake. These changes were accompanied by significant 
(P<0.05) upregulation of hepatic adiponectin gene expression. Hypothalamic and muscle adiponectin mRNA 
abundance however were significantly (P<0.05) downregulated by cerulenin treatment compared to the control. 
Our data showed that adiponectin gene expression is regulated by gender, leptin, and cerulenin in a tissue-specific 
manner. It also suggests that cerulenin does not mimic leptin by downregulating hepatic adiponectin, however it 
does mimic it by reducing food intake.
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Introduction
Adipose tissue secrets a large number of physiologically active 

peptides that often share structural properties of cytokines and are 
therefore referred to collectively as “adipocytokines” or “adipokines” 
[1,2]. The discovery of one of these peptides, leptin, which is the 
product of the obese gene [3], along with the characterization of 
adiponectin [4], has renewed interest in the hormonal regulation of 
energy homeostasis.

Leptin is a 16 kDa glycosylated protein of 146 amino acids 
produced predominantly by adipose tissue in mammals [3] and 
functions as a hormonal signaling mechanism for fat deposition. 
Mammalian adipocytes produce and secrete more leptin in the 
bloodstream as fat storage increases [5], signaling the brain via leptin 
receptor [6] and modulating the hypothalamic neuropeptide systems 
to suppress appetite and increase energy expenditure [6,7]. Mutations 
in the genes encoding leptin or the leptin receptor result in increased 
obesity and a hormonal deficit [6]. Leptin treatment decreases serum 
glucose and lipogenesis and stimulates lipid oxidation in rodents [8,9]. 
These actions are mediated primarily through neuronal targets in the 
hypothalamus and peripheral tissues [10].

Adiponectin, also named gelatin-binding protein 28 (GBP-28), 

adipocyte complement related protein 30 (Acrp30), adipose most 
abundant gene transcript 1 (apM1), or adipoQ [4,11-13], is a 30 kDa 
adipocytokine hormone of 244 amino acids exclusively secreted from 
adipose tissue in mammals. Adiponectin consists of an N-terminal 
collagenous domain and a C-terminal globular domain [14]. It 
circulates as low-molecular-weight dimers or trimers and high-
molecular-weight complexes in mammalian plasma [14]. Adiponectin 
acts, via two specific receptors adipo-R1 and adipo-R2 [15], as an 
insulin-sensitizing hormone whose blood concentrations are reduced 
in obesity and type-2 diabetes [16]. Administration of recombinant 
adiponectin to rodents increases glucose uptake and fat oxidation in 
muscle, reduces fatty acid uptake and hepatic glucose production in 
liver, and improves whole-body insulin resistance [17]. Moreover, 
intracerebroventricular administration of adiponectin decreases body 
weight and increases energy expenditure in rodents [18].

Altogether, these data showed that leptin and adiponectin exert 
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major metabolic properties and suggest a potential interplay between 
these adipocytokine hormones. These hypotheses drew the attention 
of many scientists and represented the focus of intense research 
efforts exclusively in several mammalian species [19,20]. Acute leptin 
treatment did not modify plasma adiponectin levels in humans [21]. 
Longer administration of leptin yielded conflicting results in rodents. 
Indeed, leptin treatment did not affect plasma adiponectin levels in 
lipoatrophic A-ZIP/F-1 mice [22] however, it increased adiponectin 
gene expression in normal rats [23] and adiponectin plasma levels in 
ob/ob mice [19]. Such studies are currently lacking in non-mammalian 
species. Therefore, the present study primary aimed to investigate the 
effect of recombinant chicken leptin on adiponectin gene expression in 
broiler chickens.

Natural fatty acid synthase inhibitor cerulenin and its synthetic 
analog C75 have been shown to affect food intake and energy 
expenditure in mammals similarly to leptin and adiponectin [24,25]. 
These products were found to share some molecular mediators with 
adipocytokine hormones, such as feeding-related hypothalamic 
neuropeptides for leptin [26,27], and AMPK signaling cascades for both 
leptin and adiponectin [28-32]. Thus, the secondary aim of this study 
was to explore the effect of cerulenin on the expression of adiponectin 
gene, in light of its similarities to leptin. 

Materials and Methods
Animals

Experiments were conducted in accordance with the directives 
of the European community (86/609/EEC) on the care and use of 
laboratory animals and the experimental protocols were approved by 
the K.U. Leuven Ethical Committee for Animal Experiments.

Experiment 1. Adiponectin gene expression in male and female 
broiler chickens: Male and female broiler chickens (Avibel, Halle-
Zoersel, Belgium) of 6 weeks of age (1765 and 2665g for female and 
male, respectively) were kept on a floor pen under a 14:10-h light-dark 
cycle. Chickens were allowed food (12.6 MJ/kg; 21.4% protein) and 
water ad libitum. Chickens were killed by cervical dislocation and three 
metabolically important tissues (liver, hypothalamus, and leg muscle, 
n = 3 for each gender) were removed and immediately snap frozen in 
liquid nitrogen and stored at -80°C until use.

Experiment 2. Leptin treatment: One day-old male broiler chicks 
(Avibel, Halle-Zoersel, Belgium) were reared on a floor pen until two 
weeks of age, at which time the birds were transferred to individual 
cages and were fed ad libitum (12 MJ/kg; 22% protein). After three 
days of adaptation, birds were weighed and cannulated in the brachial 
artery [66] under local anaesthesia (xylocaine). The chickens were 
allowed to recover and to adapt during four more days. Before the 
infusion experiment, the chickens were divided into two homogenous 
weight-matched groups (n = 5, mean of body weight was 1000g) and 
food deprived for two hours in order to increase their appetite. The 
mini pump (Syringe pump series, Model 22, Harvard apparatus, 
Massachusetts, USA), infused recombinant chicken leptin [8 µg/kg/h)] 
or saline at constant rate of 3 mL/h during six hours and food intake 
was recorded after the treatment (6h). Birds were killed by cervical 
dislocation and tissues (hypothalamus, liver and leg muscle) were 
removed and snap frozen in liquid nitrogen and stored at -80°C until 
use.

Experiment 3. Cerulenin administration: One day-old broiler 
chickens (Avibel, Halle-Zoersel, Belgium) were reared on a floor pen 

until one week of age, at which time the birds were transferred to 
individual cages and provided with individual feeders and drinking 
nipples. Food (12 MJ/kg; 22% protein) and water were consumed ad 
libitum and the lighting schedule provided 14h of light per day. After 
one week of adaptation, birds were divided into two homogenous 
weight (267g) and food intake matched groups (n = 4), and food 
deprived for two hours in order to increase their appetite. Each bird 
received an intravenous (IV) injection (at 0, 4 and 24h) of 15 mg/kg 
cerulenin (Sigma, Belgium) or equal volume of vehicle (10% DMSO in 
RPMI 1640 medium). Cumulative food intake was measured after 28h 
and tissues (hypothalamus, liver and leg muscle) were removed, frozen 
in liquid nitrogen and stored at – 80°C until use.

Real-time Quantitative PCR (QPCR)

Total RNA was extracted from 100 mg of tissue using the Trizol 
reagent (Invitrogen, Belgium) according to the manufacturer’s 
protocol and was treated with RQ1 RNAase-free DNase (Promega, 
Belgium). RNA integrity and quality were assessed via 1% agarose gel 
electrophoresis and RNA concentrations and purity were determined 
for each sample spectrophotometrically by using UV absorbance 
(260/280). Total RNA (1 µg) was reverse transcribed as previously 
described [56] and subjected to QPCR. QPCR analyses were performed 
in ABI PRISM 7000 Sequence Detector apparatus (Applied Biosystems, 
Belgium) in the presence of 25 μl master mix containing 25 ng template 
cDNA, 2X Power SYBR GREEN PCR Master Mix (Applied Biosystems, 
Belgium), and 300 nM forward and reverse primers (Invitrogen, 
Belgium). Oligonucleotide primers specific for chicken adiponectin 
[33] and standard housekeeping genes β-actin and ribosomal 18S as 
internal controls were used (Table 1). The primers were selected and 
designed for optimal hybridization kinetics using the Primer Express 
Software (version 2, Applied Biosystems, CA, USA). The QPCR cycling 
conditions were: 50°C for 2 min, 95°C for 10 min, followed by 40 cycles 
of two-step amplification program (95°C for 15s, and 59°C for 1 min). 
At the end of amplification, melting curve analysis was applied to 
exclude the contamination of unspecific PCR products such as primer 
dimers using the dissociation protocol from the Sequence Detection 
System. Each sample was run in triplicate and the average threshold 
cycle (Ct) values were determined for adiponectin, -actin and 18S. For 
negative controls, no RT products were used as template in the QPCR. 
Relative quantities of target adiponectin mRNA were estimated by 
the 2-ΔΔCt method [67]. For experiments 2 (leptin) and 3 (cerulenin), 
the untreated groups were chosen as the calibrators. For the first 
experiment (gender), male liver was arbitrarily chosen as the calibrator.

Plasma leptin measurement

Circulating leptin concentrations were determined by RIA (multi-
species leptin RIA kit, Linco Research Co). The RIA has been validated 

Gene Accession 
number a

Primer sequence (5’→3’; forward, 
reverse)

Size (bp)

Adiponectin

18S

β-actin

AY-523637

AF-173612

L08165

GCCAGGTCTACAAGGTGTCA

CCATGTGTCCTGGAAATCCT

ACGAGACTCTGGCATGCTAACTAGT

GCCACTTGTCCCTCTAAGAAGTTG

CTGGCACCTAGCACAATGAA

CTGCTTGCTGATCCACATCT

86

74

123

aAccession number refer to Genbank (NCBI).

Table 1: Oligonucleotide QPCR primers.
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for chicken leptin [68]. Samples were assayed in a single assay and the 
intra-assay coefficient of variation was 6.3%.

Statistical analysis

The data were analyzed by using the student’s unpaired t-test, 
except for the data from experiment 1, which were analyzed by two-
factor ANOVA with tissue and gender as classification variables. If 
ANOVA revealed significant effects, the means were compared by 
Student-Newman-Keuls (SNK)’s multiple range test using the Graph 
pad software (version 3.02, 2000, San Diego, USA). Differences were 
considered significant at P<0.05.

Results
Adiponectin gene expression in male and female broiler 
chickens

Female broiler chickens exhibited significantly (P<0.05) higher 
levels of adiponectin mRNA in the liver (1.6-fold) and muscle (2.4-
fold) compared to males (Figure 1). In contrast, hypothalamic 
adiponectin gene expression was similar for both genders. Independent 
of sex, muscle was found to contain the highest amount of adiponectin 
mRNA, followed by the liver and hypothalamus. 

Effect of leptin on food intake, leptinemia, and adiponectin 
gene expression in broiler chickens

Continuous infusion of recombinant chicken leptin significantly 
(P<0.05) increased plasma leptin levels (23-fold, Figure 2A), and 
reduced food intake by 50% (Figure 2B) compared to the vehicle-
treated group. Recombinant chicken leptin significantly downregulated 
adiponectin gene expression in chicken liver and muscle by 81% and 
63.5%, respectively (P<0.05) compared to the vehicle-treated group 
(Figure 3). The slight decrease (9%) of hypothalamic adiponectin 
mRNA levels after leptin treatment was not statistically discernable at 
the 5% level. 

Effect of cerulenin on food intake, leptinemia, and adiponectin 
gene expression in broiler chickens

Cerulenin treatment slightly decreased plasma leptin levels (Figure 
4A) and significantly reduced food intake (22%, P<0.05) compared to 
the vehicle-treated group (Figure 4B). These changes were accompanied 
by a significant upregulation (2-fold, P<0.05) of hepatic adiponectin 

gene expression, whereas hypothalamic and muscle adiponectin 
mRNA levels were significantly (P<0.05) decreased by 82% and 74% 
respectively, compared to the vehicle-treated group (Figure 5).

Discussion
Although adiponectin is expressed in a wide range of tissues in 

chickens [33], its hormonal regulation and physiological roles are 
still unknown. In the present study, we investigated the regulation of 
adiponectin gene expression by gender, leptin, and cerulenin in three 
metabolically important tissues; the hypothalamus (the main site for 
food intake and energy homeostasis control [34], the liver (the main 
site for de novo fatty acid synthesis, lipogenesis [35], and muscle (the 
main site for thermogenesis [36].

Muscle was found to contain the highest amount of adiponectin 
mRNA, followed by the liver and hypothalamus in 6-wk-old male and 
female broiler chickens. This result is quite different from that reported 

0

100

200

300

400

Liver
Hypothalamus
Muscle

*
* *

*

*

A
di

po
ne

ct
in

 m
RN

A
ex

pr
es

si
on

 (%
 c

ha
ng

e)

Figure 1: Relative quantity of adiponectin mRNA in liver, hypothalamus, and 
muscle of 6-wk-old male and female broiler chickens: Total RNA from each 
tissue was DNAse-treated, reverse transcribed and subjected to real-time 
quantitative PCR (QPCR) as described in materials and methods. Samples were 
run in triplicate and the average threshold cycle (Ct) values were determined 
for adiponectin and housekeeping genes (18S and β-actin). Relative quantity of 
adiponectin mRNA was determined by the 2-ΔΔCt method [67]. Data are presented 
as mean ± SEM (n = 3 for each gender and each tissue) and * represent 
significant difference at P<0.05.
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Figure 2: Effect of leptin treatment on plasma leptin levels (A) and 
cumulative food intake (B) in broiler chickens: Two homogenous weight-
matched groups of 3-wk-old broiler chickens (n = 5) were continuously treated 
with recombinant chicken leptin (8 µg/kg/h during 6h at a constant rate of 3 
mL/h) or saline solution. Food intake was recorded at the end of the treatment 
and plasma leptin levels were measured by RIA as described in materials and 
methods. Data are presented as mean ± SEM and * different from the control, 
P<0.05.
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Figure 3: Effect of leptin treatment on adiponectin gene expression in 
broiler chickens: Two homogenous weight-matched groups of 3-wk-old 
broiler chickens (n=5) were continuously treated with recombinant chicken 
leptin or saline solution. Birds were killed and total RNA was isolated from liver, 
hypothalamus, and muscle and subjected to RT-QPCR. Data are presented as 
mean ± SEM. * P<0.05 indicates a significant difference between leptin-treated 
group and the control.
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by Maddineni et al. [33] who have shown that adiponectin gene was 
highly expressed in the liver followed by the hypothalamus and muscle 
in 35-wk-old laying hens. It is not clear why such disparate results have 
been observed, but the use of tissues from different chicken strains 
(layer vs broiler) at different ages (6 vs 35 weeks) could contribute 
to these discrepancies. In fact, about 70 years of extensive selection 
for different performances, high meat yield for broilers and efficient 
egg production for layers, have resulted in two dramatically different 
strains of obese and lean phenotypes, respectively. These strains differ 
not only in food intake [37], growth rate [38] and fat accumulation, but 
also in behavioral [39] and neuroendocrine systems [40-43].

Interestingly, the hepatic and muscle expression of adiponectin 
gene is gender-dependent with higher levels in female compared to male 
chickens. This result is in agreement with previous studies in rodents 
and humans [44-47]. The underlying mechanism(s) for the apparent 
sexual dimorphic expression of adiponectin gene in chickens is (are) 

unknown. It could be due to differences in fat deposition within tissues 
and/or levels of hormones, particularly sexual hormones. Indeed, 
ovariectomy significantly decreased adiponectin mRNA levels in mice 
and estrogen replacement increased adiponectin gene expression 
[44]. Testosterone administration reduced plasma adiponectin levels 
in both sham-operated and castrated male rats [48]. It is possible that 
other hormone systems known to be involved in lipid metabolism 
such as leptin, ghrelin, and growth hormone, can also influence the 
gender-dependent expression of avian adiponectin [49-51]. Sex-
specific patterns of growth hormone secretion seem to be particularly 
important in sexually dimorphic gene expression in certain organs 
such as the liver [52]. In this situation, the trans-acting factor regulator 
of sex limitation (Rsl) functions to repress the transcription of a set 
of genes that have in common their induction by growth hormone in 
male liver [52].

The effect of leptin on the adiponectin system has recently been 
reported and the bulk of data were exclusively obtained from mammals 
[19,20]. To our knowledge, however, there is a paucity of information 
in non- mammalian species. The present study is the first to provide 
novel data on the regulation of adiponectin gene expression by leptin in 
broiler chickens. These strains were selected for rapid growth and high 
food intake, and are prone to obesity [53]. Chicken leptin is expressed 
not only in adipose tissue but also in the liver [54,55], and adiponectin is 
ubiquitously expressed in chickens [33], while these two adipocytokine 
genes are predominantly expressed in adipose tissues in mammals 
[3,4]. The mechanism of central action of leptin on food intake 
regulation in chickens is different from that described in mammals [56]. 
Furthermore, chickens are characteristically hyperglycemic, insulin 
resistant [57,58] and are lacking glucose transporter GLUT4 [59]. 
Taken together, these peculiarities suggest that chicken liver-derived 
leptin may exert different effects on adiponectin gene expression than 
that described in mammals. Our data showed that leptin regulates 
adiponectin gene expression in a tissue-specific manner with a down 
regulation in the liver and muscle, but not in the hypothalamus. 
This result confirms previous findings in human placenta [60], but it 
contrasts with previous data observed in rat adipose tissue [23]. The 
mechanism(s) behind these differences are not clear and may be related 
to many factors such as dose and time of leptin treatment, and tissue- 
or species-specific effects.

Although leptin has long been known to play roles in the regulation 
of food intake and energy homeostasis, the potential role of fatty acid 
synthesis in this process has been considered only recently. Inhibition 
of fatty acid synthesis by cerulenin reduces food intake and induces 
profound reversible weight loss [24]. Centrally, this compound was 
hypothesized to alter, like leptin, the expression profiles of feeding-
related neuropeptides, often inhibiting the orexigenic and inducing 
the anorexigenic neuropeptide gene expression [27]. Therefore, in this 
study we sought to assess whether cerulenin affects, as does leptin, the 
avian adiponectin gene expression. Our data showed that in contrast 
to leptin, cerulenin treatment, at a dose that produces similar effects 
on food intake, upregulated adiponectin gene expression in chicken 
liver. However, the hypothalamic and muscle adiponectin mRNA 
levels were decreased by this treatment. Again, this result supports the 
notion of tissue-specific regulation of adiponectin gene and indicates 
that cerulenin does not act as leptin in the hepatic adiponectin system, 
although it does mimic some effects of leptin in the hypothalamus to 
reduce food intake [61]. The underlying molecular mechanism(s) of 
the divergent effects of leptin and cerulenin on the hepatic adiponectin 
gene expression is unclear. We speculate that it could be related to 

A

B

0

25

50

75

100
Control
Cerulenin

Cu
m

ul
at

iv
e 

fo
od

 in
ta

ke
(g

/2
8h

)

*

0

1

2
Control
Cerulenin

Pl
as

m
a 

le
pt

in
 le

ve
ls

(n
g/

m
l)

Figure 4: Effect of cerulenin treatment on plasma leptin levels (A) and 
cumulative food intake (B) in broiler chickens: Two homogenous weight-
matched groups of 2-wk-old broiler chickens (n = 4) were intravenously treated 
with cerulenin (15 mg/kg at 0, 4, and 24h) or RPMI medium as a control. 
Cumulative food intake was monitored after 28h and plasma leptin levels were 
measured by RIA as described in materials and methods. Data are presented as 
mean ± SEM and * different from the control, P<0.05.
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Figure 5: Effect of cerulenin treatment on adiponectin gene expression in 
broiler chickens: Two homogenous weight-matched groups of 2-wk-old broiler 
chickens (n = 4) were intravenously treated with cerulenin or RPMI medium as 
a control. Birds were killed and total RNA was isolated from liver, hypothalamus, 
and muscle and subjected to RT-QPCR. Data are presented as mean ± SEM. 
* P<0.05 indicates a significant difference between cerulenin-treated group and 
the control.
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the leptin system itself since it has been suggested that leptin and 
adiponectin levels are inversely associated in mammals [62]. In our 
experimental conditions, cerulenin administration decreased plasma 
leptin levels to nearly 1 ng/ml, however leptin treatment increased 
circulating leptin levels to 60 ng/ml. Additionally, we have previously 
shown that in contrast to cerulenin, leptin treatment induces the 
chicken hepatic FAS gene expression [63], the key enzyme in fatty 
acid synthesis which catalyzes the synthesis of long-chain fatty acid 
synthesis through the condensation of acetyl-CoA and malonyl-CoA in 
a complex seven-step reaction [for review see [64]. Moreover, the avian 
liver is responsible for more than 90% of de novo fatty acid synthesis 
and is also a site of lipid storage in birds [35]. The negative association 
between adiponectin mRNA and fat pad size in rodents [65] supports 
our hypothesis, however further studies are clearly required to fully 
characterize the relationship between leptin, adiponectin and fatty acid 
synthesis in birds and their physiological roles in different avian tissues.

In rodents, it has been shown that changes in adiponectin gene 
expression were not always accompanied by concomitant changes in 
plasma adiponectin levels [19]. Because of limited quantities of tissues 
and unavailability of specific chicken adiponectin antibody we were not 
yet able to measure circulating adiponectin levels and protein content 
in different tissues in the present study.

In summary, we showed a sexually dimorphic expression of 
chicken adiponectin gene. Leptin and cerulenin differently regulate 
adiponectin in a tissue-specific manner. Further studies are warranted 
to fully understand the physiological roles of adiponectin and to shed 
light on its interaction with leptin and fatty acid synthesis in birds.
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