LEPTOSPIRA: Morphology, Classification and Pathogenesis

Haraji Mohammed1*, Cohen Nozha2, Karib Hakim3, Fassouane Abdelaziz4 and Belahsen Rekia1

1Laboratoire de Biotechnologie, Biochimie et Nutrition, Faculté des sciences d’El Jadida, Maroc.
2Laboratoire de Microbiologie et d’Hygiène des Aliments et de l’Environnement Institut Pasteur Maroc, Casablanca, Maroc
3Unité HIDAOA, Département de Pathologie et de santé publique vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat; Maroc.
4Ecole Nationale de Commerce et de Gestion d’El Jadida ; Maroc

Abstract

Leptospirosis, caused by the pathogenic leptospires, is one of the most widespread zoonotic diseases known. Leptospirosis cases can occur either sporadically or in epidemics. Humans are susceptible to infection by a variety of serovars. These bacteria are antigenically diverse. Changes in the antigenic composition of lipopolysaccharide (LPS) are thought to account for this antigenic diversity. The presence of more than 200 recognized antigenic types (termed serovars) of pathogenic leptospires have complicated our understanding of this genus. Definitive diagnosis is suggested by isolation of the organism by culture or a positive result on the microscopic agglutination test (MAT). Only specialized laboratories perform serologic tests; hence, the decision to treat should not be delayed while waiting for the test results.

Keywords: Leptospirosis; Leptospira; Serovar; Morphology; Pathogenesis

Introduction

Leptospirosis is a bacterial zoonotic disease of global importance. It is caused by infection with pathogenic Leptospira species: helical shaped motile spirochetes which belong to the family leptospiraceae. Leptospirosis encompasses a wide spectrum of clinical and subclinical disease in both humans and animals. Rats and other rodents are the most important sources [1]. Livestock farming plays an important role as a major occupational risk factor for human leptospirosis and farmed deer is one of the contributing factors.

This genus Leptospira is divided into two species with different metabolic properties: L. interrogans which includes pathogenic strains and L. biflexa including saprophyte strains isolated from the environment. These two species are themselves divided into serovars defined by agglutination techniques in the presence of homologous antigen (approximately 60 serovars for L. biflexa, more than 225 for L. interrogans). Serological methods have identified more than 300 serovars more than 200 of which are considered pathogenic [1-3]. Alongside this phenotypic classification, genotyping classification of Leptospira has been established in which more species including the same serovars as previously have been described. In the absence of correlation with the data of pathogenicity of different strains, this classification is little used. However, the new genomic classification system has been established in which more species including the same serovars have been described for the genus [2].

Leptospires have distinctive hooked ends (Figure 1A & 1B). Two periplasmic flagella with polar insertions are located in the periplasmic space and are responsible for motility; the FlaA and FlaB proteins constitute the flagellar sheath and core respectively. Electron microscopy showed a flaB mutant to be deficient in endoflagella and non-motile. Leptospires have a typical double membrane structure in which the cytoplasmic membrane and peptidoglycan cell wall are closely associated and are overlaid by an outer membrane [10]. Within the outer membrane, the LPS constitutes the main antigen for Leptospira. It is structurally and immunologically similar to LPS from Gram negative organisms. Their visualization is achieved after metal impregnation (silver staining) or after artificial thickening by immunoperoxidase or immunofluorescence (Andre-Fontaine1992).

Morphology of Leptospira

Leptospires are corkscrew-shaped bacteria, which differ from other spirochetes by the presence of end hooks. They belong to the order of Spirochaetales, family Leptospiraceae. genus Leptospira. about 0.1 µm in diameter by 6–20 µm in length [1].

Leptospires are mobile, their bodies are small diameter requiring the use of dark field microscopy or phase contrast for observation. These bacteria are aerobic, do not resist drought or hypertonicity, however, they support alkalization to pH 7.8.

Leptospira species are also divided serologically through the cross-reaction of cell antigens using the crossagglutinin absorption test (CAAT); over 200 serovars have been described for the genus [2].

Leptospires have distinctive hooked ends (Figure 1A & 1B). Two periplasmic flagella with polar insertions are located in the periplasmic space and are responsible for motility; the FlaA and FlaB proteins constitute the flagellar sheath and core respectively. Electron microscopy showed a flaB mutant to be deficient in endoflagella and non-motile. Leptospires have a typical double membrane structure in which the cytoplasmic membrane and peptidoglycan cell wall are closely associated and are overlaid by an outer membrane [10]. Within the outer membrane, the LPS constitutes the main antigen for Leptospira. It is structurally and immunologically similar to LPS from Gram negative organisms. Their visualization is achieved after metal impregnation (silver staining) or after artificial thickening by immunoperoxidase or immunofluorescence (Andre-Fontaine1992).

*Corresponding author: HARAJI Mohammed, Laboratoire de Biotechnologie, Biochimie et Nutrition, Faculté des sciences d’El Jadida, Maroc, E-mail: m.haraji@hotmail.com

Received July 18, 2011; Accepted September 06, 2011; Published September 29, 2011

Copyright: © 2011 Mohammed H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Leptospires are obligate aerobes with an optimum growth temperature of 28–30°C. They grow in simple media enriched with vitamins B₁ and B₁₂, long-chain fatty acids, and ammonium salts. Long-chain fatty acids are utilized as the sole carbon source and are metabolized by β-oxidation [1]. Growth of leptospires is often slow on primary isolation, and cultures have to be retained for about 13 weeks before being discarded. Agar may be added at low concentrations (0.1–0.2%). In such semisolid media, growth reaches a maximum density in a discrete zone beneath the surface of the medium, which becomes increasingly turbid as incubation proceeds. This growth is related to the optimum oxygen tension and is known as a Dinger's ring or disk. Leptospiral cultures are maintained by repeated subculture or by storage in semisolid agar containing hemoglobin. Long-term storage in liquid nitrogen also yields good results and is the preferred method of storage for maintaining virulence. Molecular diagnostic methods are increasingly being used for clinical diagnosis in endemic areas because of their sensitivity and specificity. PCR amplification techniques are one such method. Alternatively, simple, rapid methods are the need of the hour and polymerase chain reaction is one such method.

Classification

The spirochetal are an order of bacteria dividing itself into two families: Spirochaetaceae and Leptospiraceae. Within the family Spirochaetaceae, we can find Treponema types, Serpulina and Borrelia. The agent of leptospirosis, the genus Leptospira, belongs to the family of Leptospiraceae [10].

Classification of Leptospira is based on the expression of the surface-exposed epitopes in a mosaic of the lipopolysaccharide (LPS) antigens, while the specificity of epitopes depends on their sugar composition and orientation.

Leptospira is divided into several species and subspecies, called serogroups and serovars, usually associated with a natural host (Table 1).

Clinical and Serological classification

Leptospires are bacteria which can be either pathogenic (i.e. having the potential to cause disease in animals and humans) or saprophytic (i.e. free living and generally considered not to cause disease) [11,12]. The saprophytes are supposed not to cause disease. They are occasionally found in cultures from clinical materials, but the significance of their presence is uncertain. Their main importance in medical microbiology is as contaminants in supposedly sterile or at least saprophyte-free materials.

Saprophytic species of Leptospira include L. biflexa, L. meyeri, L. yanagawae (genomospecies 5), L. kmeiyi, L. vanthieli (genomospecies 4), and L. wolbachii, and contain more than 60 serovars.

Since both of two species are morphologically indistinguishable they have to be differentiated to prevent false positive result. Conventionally, the differentiation between pathogenic and saprophytic leptospires is carried out by tests like pathogenicity to animals, growth response to 8-azaguanine (225 μg/ml) at low temperature, conversion spherical forms by 1M NaCl. The low temperature test makes use of the fact that the minimum growth temperature ranges from 13 to 15°C for pathogenic leptospires and 5–10°C for saprophytes; however, this criterion could be misleading as some pathogenic Leptospira like serovar Icterohaemorrhagiae can also grow at 10°C [13]. Hence, alternative simple, rapid methods are the need of hour and polymerase chain reaction is one such method.

The precise identification and classification of Leptospira spp. is important for epidemiological and public health surveillance, as different serovars can exhibit different host specificities and may not be associated with a particular clinical form of infection.

Genotypic Classification

The genotypic classification of leptospires is supported by Multi-locus Enzyme Electrophoresis (MLEE) data [14]. The new genomic classification system has revealed pathogenic species, which can contain both pathogenic and nonpathogenic serovars as well as intermediate species such as L. meyeri, L. inadai and L. fainei [5,6].

Genotypic classification will eventually supplant the phenotypic classification. Indeed, it is based on taxonomic databases more relevant than the serological classification. In addition, it will allow progress on
The correct characterization of leptospiral pathogenicity is strengthened by using a polyvalent analytical approach that minimizes uncertainties encountered from individual tests especially when phenotypic analysis does not strictly equate with genotypic speciation [19].

In particular, the molecular basis for virulence remains unknown, due mainly to the absence, until recently, of genetic tools for the manipulation of *Leptospira*. The recent availability of genome sequences from pathogenic and saprophytic *Leptospira* spp. [20,21] coupled with the recent development of mutagenesis systems [22] has allowed a more detailed and genetically defined investigation of cellular and molecular pathogenic mechanisms in leptospirosis. The humoral immune response appears in the first week of infection, it activates the process of phagocytosis by neutrophils and macrophages. Complement activation is also involved in lysis of the leptospires.

In susceptible hosts such as humans, systemic infection can produce severe multi-organ manifestations. Initial symptoms, which may include chills, fever, headache (severe and persistent), diarrohea, or a rash [23], myalgia, malaise, prostration, retro-orbital pain, conjunctival suffusion [24], muscle tenderness and lung involvement, appear quite abruptly after an incubation period of about 10 days (range 4 to 19 days). Cases that also have other symptoms [8] such as meningitis, hemorrhage into skin and mucous membranes, jaundice, hepatorenal failure [25] and myocardiitis may be misdiagnosed.

References

