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Abstract
Leukemic stem cells (LSCs) have been identified in acute myeloid leukemia (AML). Similar to haematopoietic 

stem cells, these LSCs are able to self-renew, differentiate, and proliferate extensively. Recent studies suggest that 
LSCs are critical for the initiation and maintenance of leukemia.

This review will describe the characteristic features of LSCs in AML and the possible targets expressed on the 
surface of AML, the intracellular targets and the novel molecular and flow cytometry methodologies being used to 
particularly ablate the LSC population. 

Studies have shown the potential importance of ablating LSCs when treating leukemia. The unique characteristics 
of LSCs that differentiate them from their normal counterparts can be applied to specifically target the leukemic 
population. 

Current therapeutic strategies may not effectively ablate the LSCs, leaving the potential for disease progression 
or recurrence. A better understanding of LSCs and molecular biology will allow the design of more effective therapies.
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Introduction
Acute myeloid leukemia (AML) is one of the most common 

leukemia’s in adults. AML is characterized by an accumulation of 
undifferentiated and functionally heterogeneous populations of cells 
[1,2]. Relapse of the disease is thought to occur because of the failure 
of chemotherapy to eradicate LSCs [3]. LSCs have been defined as 
CD34+CD38- cells with the ability to reconstitute marrow of mice with 
severe combined immunodeficiency (SCID)–repopulating ability, 
which is a reflection of their capacity to self-renew [4,5].

In order for any AML therapy to be curative, it needs to be effective 
against the cells that propagate and sustain the disease, the so called 
LSCs. However, previous studies suggest that LSCs are biologically 
distinct from more mature leukemic blasts and may not be responsive 
to conventional chemotherapeutic regimens [6,7]. In 1997, Bonnet and 
Dick described the phenotype for LSCs as CD34+/CD38- [4]. Subsequent 
studies showed that LSCs are also CD34+/HLA-DR-/CD71- and fail to 
express Thy-1 [5,8]. Numerous studies have attempted to distinguish 
leukemic from normal stem cells. One potential difference between 
normal and leukemic cells lies in their response to haematopoietic 
growth factors. Several studies have examined the cytokine response 
of primary leukemia cells and demonstrated mitogenic activity for 
interleukin-3 (IL-3), granulocyte colony-stimulating factor (G-CSF), 
granulocyte-macrophage colony-stimulating factor (GM-CSF), stem 
cell factor (SCF), thrombopoietin (TPO) and other factors [9-11].

Over the last few years, the functional properties and phenotype 
of human LSCs have begun to be explored. Today, AML stem cells 
can be discriminated and separated from normal stem cells and 
from more mature AML cells [12-16]. Due to their repopulating and 
disease-maintaining effects, these cells appear to be a most important 
target cell population in the context of curative therapies. Therefore, 
a number of studies are presently focusing on AML stem cells and on 
effective drugs that can attack these cells in a target-dependent manner. 

The currently available data are promising and point to the potent 
anti-leukemic effects of ‘stem cell-targeted’ drug therapy [14,17-22]. 
However, these data also show that many targets and pathways still 
need to be explored. The most promising approach for future concepts 
may be to target multiple extracellular and intracellular targets and 
unrelated downstream signalling pathways in AML stem cells by the 
co-administration of various targeted drugs (advanced targeted drug 
therapy). Whether these strategies will help in the eradication of AML 
clones and the management of minimal residual AML remains to be 
determined in future clinical trials.

Thus, there is compelling evidence that the precise predisposing 
or suppressing cellular and molecular factors of relapses in patients 
in complete remission (CR) remain to be determined. It is becoming 
evident that relapses occur in patients in whom the leukemic cells 
survive chemotherapy, which show evidence of functional properties 
of stem cells [23]. A number of observations proposed that AML clones 
in each patient represent a heterogeneous mixture of cells with varying 
phenotypic and functional properties [1,4,5,8,23-25]. In particular, 
despite differentiation and maturation arrest, AML clones are 
organized in a hierarchical manner similar to normal haematopoietic 
cells [1,4,24,26]. On the top of this hierarchy, LSCs act as AML-
initiating and maintaining cells, whereas their more mature progeny-
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cells are unable to maintain the long-term growth of leukemia [1,4,24]. 
This hypothesis has been confirmed for various subtypes of AML by 
utilizing repopulation assays [1,24].

LSCs obtained from patients with AML are defined by their AML 
repopulating capacity in vivo, i.e. their ability to give rise to leukemia’s 
in immunodeficient mice [1,4,24]. Over the last few years, these cells 
have been characterized in terms of their frequency in AML clones, 
their phenotype, and their functional properties. Similar to normal 
haematopoietic stem cells (HSCs), LSCs represent only a small fraction 
of cells within a given AML clone (0·2–100 cells in 106 cells) [4]. In 
common with their daughter cells, most LSCs express CD34 [1,27-29].

In addition, LSCs despite being present in low numbers may be 
responsible for the relapses in AML and therefore are considered to 
contribute essentially to the pathology and clinical outcome in these 
patients. So rather than monitoring the whole blasts cell population, it 
may be more relevant to search for the residual LSCs.

Functional and Phenotypic Characterization of 
Leukemic Stem Cells
Functional characterization of LSCs

AML-LSCs are found to be non-cycling and present in the 
endosteal region of the bone marrow [30]. Analogous to the 
repopulating potential of HSCs, LSCs have the potential to repopulate 
haematopoietic tissues in severe combined immunodeficient (SCID) 
mice [1,4,24,26]. Though, only a small sub-fraction of cells within 
leukemic clones represent LSCs, whereas the vast majority of AML cells 
in a given clone are unable to repopulate SCID mice with leukemia  
[1,4]. The capacity of LSCs to self-renew in vivo is further supported by 
the fact that the leukemic cells that can be generated from these cells in 
SCID mice can again give rise to leukemia when serially transplanted 
into ‘secondary’ cohorts of SCID mice [4]. The morphology and the 
immunophenotype of the LSC-derived AML cells in these SCID mice 
are identical to the original AML clone [4]. The capability of stem cells 

to be dormant and remain in their respective bone marrow niches 
protected from antagonistic influences allows for maintenance of their 
self-renewal activity [30]. These results demonstrate the potential of 
LSCs to initiate the re-growth of AML cells in vivo (Figure 1). Based 
on this finding, it is tempting to speculate that LSCs represent those 
residual AML cells (Minimal Residual Disease or MRD) [31-34] that 
can regrow to overt relapsing leukemia’s after chemotherapy or bone 
marrow transplantation.

An important aspect of LSCs in patients with AML is that a 
high percentage of them appear to be quiescent (Ki67-negative), 
thus contrasting with the high cell burden and potentially aggressive 
clinical course of these leukemia’s [35]. This observation may explain 
why these LSCs are often less responsive against cell cycle-active 
chemotherapeutic agents compared to their more mature progeny. 
Even though LSCs reportedly express receptors for IL-3 and other 
cytokines, it remains unknown whether such cytokines can induce 
the growth or/and differentiation of LSCs. Taussig et al. [36] reported 
that leukemia-initiating cells (LIC’s) were found to be present in the 
CD34- fraction in a significant amount of AML’s. They also showed 
that the phenotype of LIC’s is heterogeneous in AML. It is this feature 
of LIC’s which can make it difficult for targeting therapies against 
surface antigens. Furthermore, it was also shown that LIC’s were not 
found in the CD34-CD38- fraction in approximately half of the NPM 
(Nucleophosmin) gene-mutated AML’s [36]. NPM1 is a gene which 
has both tumor-suppressor and oncogenic functions. A disruption of 
the NPM nucleolar-localization signal occurs with mutations of NPM, 
causing accumulation of NPM in the cytoplasm. The NPM1 gene 
rearranges with the retinoic acid receptor α (RARα) in AML [37,38]. 
Also, although Jordan et al. [35] have shown that IL-3α receptor 
(CD123) is detectable on LSCs and not HSCs, little is known about 
their exact functional role in LSCs.

Phenotypic characterization of LSCs 

Previous studies demonstrate that LSCs are mainly found 

Figure 1: (A) The leukemic stem cell (LSC) model proposes that leukemic blasts originate from a common primitive progenitor that has the capacity to self-renew. (B) 
Conventional therapy for leukemia has been designed to eliminate leukemic blasts. These therapies may not effectively eradicate the LSC population which have the 
functional characteristics of self-renewal, differentiation and proliferation, which ultimately recapitulates the disease [67].
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within the CD34+CD38–Lin- subset of the leukemic clone (Figure 2) 
[4,24,39]. Other clonal leukemic cells with a more mature phenotype 
are unable to initiate AML in vivo [1,24]. These data are similar to the 
repopulation characteristics of normal human HSCs in SCID mice 
[1,4,23,24,27,40,41]. However, despite phenotypic and functional 
similarities, it has to be highlighted that slight differences in the cell 
surface phenotype are found when comparing normal HSCs with 
LSCs. Similarly, LSCs, but not HSCs, express the IL-3 receptor α chain 
(CD123) [35,42,43]. Another marker that is detectable on LSCs in (a 
subset of) patients with AML, is Siglec-3 (CD33) [44,45]. In addition, 
LSCs may also show immunophenotypic heterogeneity concerning 
other surface molecules such as CD116 (GM-CSFRα), CD117 (SCFR), 
or CD71 [5,8,25,46].

C-type lectin-like molecule-1 (CLL-1) has also been shown to 
be expressed in LSCs and not HSCs [16]. CD34+CD38-CLL-1+ cells 
were found to engraft NOD/SCID mice and a high CLL-1+ fraction 
was associated with quick relapse. In this regard, CLL-1 may serve 
as a marker for quantification of minimal residual stem cell disease. 
Further, CD44, an adhesion molecule, has also recently been described 
as a target on CD34+CD38- cells [20]. It was shown that the activating 
antibody H90 results in differentiation of cells and in a major reduction 
of engraftment in NOD/SCID mice. However, CD44 is also weakly 

expressed on normal CD34+CD38- cells and on more differentiated 
haematopoietic cells. It is also a key regulator of AML-LSCs homing to 
microenvironmental niches [20].

Phenotypic differences between LSCs and HSCs may be of 
great value. These differences allow discrimination of these cells by 
flow cytometry assays and to separate LSCs from HSCs for genetic 
analyses. Markers specific for LSCs may prove suitable targets for 
the development of novel therapies; because otherwise normal HSCs 
would also be eradicated, and such an approach would then only be 
possible when combining with a transplantation strategy. As LSCs 
are responsible for relapse, they may also be used for MRD (Minimal 
Residual Disease) detection.

Targets of AML Therapy Detectable in Leukemic Stem 
Cells

The challenge is to identify proapoptotic stimuli that spare the 
normal HSCs while exerting the desired effect on LSCs. The key for 
targeting LSCs is by targeting drug efflux pumps, targeting cell cycle, 
targeting cell surface antigens, targeting NF- κB activity, targeting 
cell differentiation, targeting leukemia stem cells via active specific 
immunization and targeting other pathways involved in self-renewal. 
Molecular constructions in AML cells that may serve as targets of 

Figure 2: Schematic illustration of the normal and leukemic human haematopoietic hierarchies. Human haematopoietic cells are organized in a hierarchy that is 
sustained by a small population of self-renewing HSCs. HSCs give rise to progressively more lineage-restricted, differentiated progenitors with reduced self-renewal 
capacity (LTC-ICs, long-term culture-initiating cells; CFU, colony-forming units), which in turn produce functionally mature blood cells. Disruption of pathways regulating 
self-renewal and differentiation through the acquisition of transforming mutations generates LSCs capable of sustaining growth of the leukemic clone in vivo. LSCs 
possess an altered differentiation program, as demonstrated by aberrant expression of some cell-surface markers (indicated in purple) and give rise to an aberrant 
developmental hierarchy that retains aspects of its normal counterpart. In vivo, reconstitution assays using immune-deficient mouse recipients enable detection of HSCs 
and LSCs as SCID-repopulating cells (SRCs) and SCID leukemia-initiating cells (SL-ICs), respectively [39].
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specific therapy are located in various compartments of the leukemic 
cell. Generally, such targets are either detectable on the cell surface or 
within the cytoplasm (Table 1) [47].

Targets expressed on the surface of AML leukemic stem cells

Based on target molecules expressed on the surface of leukemic 
cells, a number of new treatment strategies have recently been 
established [22,45,48-51]. One of these concepts employs humanized 
antibodies (Ab) conjugated with a cytostatic drug. These conjugates 
bind to leukemic cells through an interaction of the Ab with the target 
structure on the surface of AML blasts. Consecutively, the Ab–drug 
conjugate is internalized by the leukemic cells. After internalization, 
the drug is released from the Ab and inhibits critical cell functions 
(depending on the nature of the cytostatic drug) and eventually leads 
to cell death [22,49,52,53]. An important example for such conjugates 
is Mylotarg (gemtuzumab/ozogamicin), which consists of a humanized 
anti-Siglec-3 antibody (CD33) and the highly potent (toxic) cytostatic 
drug calicheamicin [22,49,52,54]. However, it has been found that 
patients are prone to relapse despite being effective at inducing 
remission in some patients, which raises the question of the resistance 
of LSCs to the toxic drug [55].

Furthermore, anti-interleukin-3 (IL-3) receptor alpha chain 
(CD123)-neutralizing antibody (7G3) targeted AML-LSCs, impairing 
homing to bone marrow and activating innate immunity of NOD/SCID 
mice. 7G3 treatment profoundly reduced AML-LSCs engraftment 
and improved mouse survival. Mice with pre-established disease 
showed reduced AML burden in the bone marrow and periphery 
and impaired secondary transplantation upon treatment, establishing 
that AML-LSCs were directly targeted. 7G3 inhibited IL-3-mediated 
intracellular signaling of isolated AML CD34+CD38- cells in vitro 
and reduced their survival. These results provide clear validation for 
therapeutic monoclonal antibodies (MoAbs) targeting of AML-LSCs 
and for translation of in vivo preclinical research findings toward a 

clinical application [14]. In one study [56], it was shown that there 
was significant correlation of CD34+CD38-CD123+ leukemic cells at 
diagnosis with response to post–induction treatment and survival. As 
a result, it was also suggested that adverse outcomes in AML could be 
predicted by high levels of CD34+CD38-CD123+ [56]. Proportions of 
LSCs expressing CD123 measured by multiparametric flow cytometry 
[32] were found to be significantly lower in the complete remission 
(CR) group compared with the non-CR group. This could help predict 
prognosis of AML by measurement of the proportion of LSCs [15].

CD47, a cytokine receptor similar to CD123, is a transmembrane 
protein that serves as a ligand for signal regulatory protein (SIRPα) and 
is found to be upregulated on AML-LSCs than on HSCs. An increased 
expression of CD47 on LSCs contributed to pathogenesis by inhibiting 
phagocytosis through the interaction of CD47 with an inhibitory 
receptor on phagocytes. Thus, increased CD47 expression proved to be 
an independent poor prognostic factor. Targeting of human AML stem 
cells by blocking MoAbs directed against CD47 preferentially enabled 
phagocytosis of AML LSCs. Elimination of human cancer cells in 
xenograft models of AML by this targeting method was studied and the 
level of expression of CD47 on AML-LSCs was found to be associated 
with poor prognosis [19].

Another marker which can be expressed on the surface on LSCs is 
CD96. CD96, a member of the Ig gene super family, has been shown 
to be expressed in a majority of the LSCs population and at a much 
lower frequency in HSCs. CD96+ AML cells are highly enriched for 
LSCs activity compared to CD96- AML cells. The presence of CD96 
expression allows AML-LSCs to be distinguished from normal HSCs 
[21]. Thus, CD96 is a cell surface marker which can serve as an LSC-
specific therapeutic target. Also recently, it was shown that CD96-
specific antibodies can efficiently activate ADCC (Antibody dependent 
cell-mediated cytotoxicity) which is an important Fc receptor mediated 
effector mechanism for the in vivo activity of therapeutic antibodies. 

Antigen Function/Characteristics
Expression

Reference
LSCs HSCs
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CD123 High affinity IL-3 receptor (IL-3α) + - Jordan et al. (2000)

CD47 Ligand for SIRPα, inhibits  phagocytosis + - Majeti et al. (2009)

CD96 Activation of  Antibody dependent cell-mediated 
toxicity ++* + Hosen et al. (2007)

CD32 Fc-g receptor 2 (FCGR2) +  - Saito et al. (2010)

CD25 High-affinity IL-2 receptor (IL2Rα)  + - Saito et al. (2010)

CD44 Facilitates adhesive interactions, key regulator of 
AML-LSCs homing to microenvironmental niches ++* + Jin et al. (2006)

CXCR4 Cell membrane receptor, contributes to SDF-1α/
CXCR4 interactions ++* + Spoo et al. (2007)

In
tr

ac
el
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rs AurA Mitotic serine/threonine kinases that play a role in 
cytokinesis during mitosis and cell division ++* + Ochi et al. (2009)

Mcl-1 Plays a critical role in maintenance and survival 
of LSCs ++* + Yoshimoto et al. (2009)

TIM-3
Regulator of macrophage activation , role with 
complement-dependent and antibody dependent 
cell-mediated cellular cytotoxic activities

+ - Kikushige et al. (2010)

NF-κB Transcription factor, responsible for LSC 
antiapoptotic activity + - Guzman et al. (2001)

Abbreviations: IL, interleukin; SIRPα, signal regulatory protein α; SDF, stromal cell-derived factor; LSCs, leukemic stem cells; HSCs, haematopoietic stem cells; CXCR4, 
C-X-C chemokine receptor type 4; AurA, Aurora A kinase; Mcl-1, myeloid cell leukemia-1; TIM-3, T cell immunoglobulin mucin-3; NF-κB, nuclear factor-κB. *Increased 
expression

Table 1: Significant cell surface and intracellular targets in AML-LSCs.
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However, in a clinical setting, future studies are yet to determine 
whether or not the single chain fragment of the variable regions fusion 
proteins (scFv-based mini-antibodies) will be able to eradicate AML-
LSCs [57].

Differential analysis of genes using microarrays as well as protein 
expression by flow cytometry revealed two cell surface markers, CD32 
and CD25 (that are normally expressed on B and T cells) which 
were found to be highly expressed in human AML-LSCs and not 
expressed in normal HSCs. They were also found to be stably present 
in the all-important cell cycle-quiescent, AML initiating cells in the 
endosteal niche that might be the cause for AML relapse. Xenogeneic 
transplantation has shown that HSC function could be eliminated from 
the CD34+CD38-CD25- and CD34+CD38-CD32- fractions of human 
cord blood, thus confirming that targeting of CD32 or CD25 would 
not compromise normal HSC development [12]. This could facilitate 
the development of therapeutic strategies in AML because they were 
present in a significant number of AML patients, especially the poor-
risk population [12,13,58].

CXC chemokine receptor (CXCR4), another marker for LSCs on 
the surface, is a cell membrane receptor is found on stem cells [59-
61]. It has been found that SDF-1α (stromal cell-derived factor-1) /
CXCR4 interactions contribute to the resistance of LSCs to apoptosis 
in the microenvironment. Effective targeting of CXCR4 and its 
interactions paves the way to eliminate and target cells that are usually 
protected by the bone marrow microenvironment [62]. Recently, it was 
suggested that CXCR4 expression is associated with poor prognosis in 
AML patients and a marker of more aggressive disease in a normal 
karyotype AML population [63]. This can even be incorporated into 
risk assessment of AML patients [18,63].

Intracellular targets of AML therapy 

Over the past few years, a large number of cytoplasmic and nuclear 
target structures in AML cells have been identified [17,64-66]. Among 
these are DNA-methylating enzymes, histone deacetylases, leukemia-
specific fusion gene-products (such as promyelocytic leukemia gene/
RARα {PML/RARα}), pro-oncogenic transcription factors (Signal 
Transducer and Activator of Transcription {STAT}-family, Ets, c-Myb, 
HOX, NF-κB, others) and critical elements in pro-oncogenic signal 
transduction cascades (Receptor tyrosine kinases {RTKs}, mutated 
oncogenic forms of Ras, others) [66].

Nuclear factor κB (NF-κB) is constitutively expressed in blast cells 
in a majority of patients with AML [64,67,68]. Additionally, NF-κB-
activity is detectable in the quiescent LSC population in these patients, 
whereas normal HSCs do not express NF-κB activity [64,68]. Thus, 
trying to eradicate LSCs by direct targeting using NF-ĸB pathway could 
be a potential therapeutic strategy [69,70].

Recent reports have identified and applied a number of different 
tyrosine kinase inhibitors in clinical trials in leukemic patients [71-82]. 
Important stem cell RTKs expressed in AML cells are the SCF receptor 
KIT, macrophage colony-stimulating factor (M-CSF) receptor FMS, 
PDGFRβ, fms-related tyrosine kinase-1 (FLT1) and FLT3 [66,81,83,84]. 
At least some of these tyrosine kinases are also expressed in LSCs [71].

Several previous and more recent observations suggest that these 
molecules do play an important role in leukemogenesis [66,81,83,85,86]. 
Similarly, the FLT3 gene is the most frequently mutated gene in 
patients with AML [66,83,84,86,87]. These mutations lead to ligand-
independent dimerization of the receptor and its auto-phosphorylation 

with consecutive activation of multiple signal transduction pathways 
including the STAT5-, RAS/MAPK- and phosphoinositide 3-kinase/
AKT-pathway (PI3/AKT) [88]. Since these mutations apparently act 
pro-oncogenically, it is appealing to speculate that they all take place 
and are detectable at the stem cell level in patients with AML.

A number of drugs targeting RTKs have recently been applied to 
AML cells in clinical and/or pre-clinical trials. Likewise, the inhibition 
of FLT3 by AG1296 or Herbimycin A in AML cells in mice was found 
to counteract the progression of leukemia [66,83]. In addition, a 
number of targeting drugs directed against RTKs have been developed 
in recent years, including CEP701, CEP751, SU5614, SU5416, SU11248 
and PKC412 [71,76-82,89]. These inhibitors may act on several RTKs 
including FLT3, thus inhibiting proliferation of leukemic cells. 
Additionally, some of these inhibitors have already been evaluated in 
vivo. Likewise, CEP701 has been reported to induce responses in AML 
patients’ refractory to conventional chemotherapy [79]. Interestingly, 
at least some of these RTK-type receptors are known to be expressed 
in AML-LSCs.

Recently, a novel and promising therapeutic strategy to 
preferentially target human AML-LSCs was uncovered by lysosome 
disruption [90]. An important finding of this study was that AML-
LSCs were found to be enriched in bulk AML cells and their subsets 
which showed increased lysosomal size and biogenesis after lysosome 
disruption in human AML cells. This research study has shown that 
some common biological features and mechanisms remain open to 
selective targeting even though AML biology is so widely known as 
heterogeneous [90].

A breakthrough intracellular target for AML-LSCs is Aurora A 
kinases (AurA) which are a family of mitotic serine/threonine kinases 
that play a role in cytokinesis during mitosis and cell division [91,92]. 
AurA showed a significant higher level of expression in AML-LSCs 
than in HSCs and can be used as a marker. Kim et al. [93] showed that 
specific AurA inhibitors could be used to reduce AML-LSCs. The study 
also further found that the reduction of AML-LSCs could be enhanced 
with stimulation with G-CSF and the use of AurA inhibitors [93]. 
Further studies confirmed that AurA inhibitors significantly inhibited 
proliferation, impaired self-renewal capacity and induced apoptosis 
of AML-LSCs as well as prolonged survival when AurA inhibitors 
were used during engraftment of CD34+CD38- AML cells in severely 
immunocompromised mice [94].

Another therapeutic target for AML-LSC therapy present 
intracellularly is myeloid cell leukemia-1 (Mcl-1), which has been found 
to be up-regulated during AML relapses in FLT3/ITD AML-LSCs. 
This could probably be due to the fact that Mcl-1 confers some sort of 
resistance to chemotherapy [95]. Mcl-1 has been suggested to promote 
survival of FLT3/ITD AML-LSCs via a STAT5-dependent pathway that 
is independent of normal FTL3 signaling [96]. Furthermore, deletion of 
Mcl-1 led to induced death of transformed AML and eradicated disease 
in the AML NOD/SCID mice [97]. So, the lowering of Mcl- 1 through 
a variety of approaches such as disruption or degradation of Mcl-1 by 
Bcl-2 inhibitors and other inhibitors, interfering with transcription and 
translation processes and targeting STAT5-dependent pathway makes 
Mcl-1 a favorable therapeutic target in AML-LSCs [96,98]. Studies 
also suggest that combination approaches which disrupt multiple pro-
survival pathways and activate their pro-apoptotic pathways could be 
promising for targeting [98].

T cell immunoglobulin mucin-3 (TIM-3), normally found as 
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a surface molecule expressed in CD4+ Th1 lymphocytes in mouse 
haematopoiesis, is another promising target to eradicate AML-LSCs 
as it has been found to be expressed on LSCs but not on HSCs. TIM-
3 functions as a regulator of macrophage activation as well as having 
a role in complement-dependent and antibody dependent cell-
mediated cellular cytotoxic activities. When TIM-3 was targeted using 
monoclonal antibody treatment, it inclined to eradicate AML-LSCs 
without affecting normal HSCs in mouse models [99,100].

Summary and Future Directions
AML populations are consisted of hierarchical structure and 

in recent years it has been possible to begin analyzing individual 
constituents of the leukemic clone. Although, varying AML subtypes 
differentiate to differing levels, it has become increasingly evident that 
important similarities exit at the top of the developmental hierarchy.

Given the quiescent status of LSCs and their relatively low 
frequency, ablation of this population is likely to be a significant 
challenge. Despite the fact that a variety of LSC characteristics are 
almost identical to normal HSCs, recent studies of AML molecular 
biology and immunophenotypic characteristics suggest that some 
differences between normal and leukemic cells are apparent in the 
stem cell/progenitor cell pool [14,43,101,102]. From a therapeutic 
perspective, this observation is extremely important because it suggests 
LSCs do have unique characteristics that may make them preferentially 
sensitive to apoptosis/ablation. This information also serves to 
emphasize the importance of better understanding LSCs and how they 
differ from normal HSCs.

By establishing general parameters for induction of LSC apoptosis, 
it should be potential to develop more effective clinical therapies. Given 
the heterogeneity of mutations that give rise to these malignancies, the 
ability to target the malignant population is not likely to be achieved by 
a single specific inhibitor. To this end, it is fundamental to completely 
understand the signaling pathways that regulate survival and death 
in LSC populations. Current studies have started to characterize 
molecular mechanisms that may be relevant to LSC survival. However, 
more comprehensive methodologies using multiparameter or 
combined approaches should be the priority for future studies [12-
15,32,33,56,102,103].

Combining different MoAbs may also target a larger proportion 
of the heterogeneous AML population, overcoming possible clonal 
selection, as well as evasion by epitope down regulation, as has been 
shown in lymphoma after treatment with CD20 targeting rituximab 
[104]. An AML patient surface immunophenotype is relatively cost-
effective to characterize, raising the possibility of tailored therapy based 
on a selection of available MoAbs. Indeed, we are entering a new and 
exciting era in the struggle to improve outcome in adult AML.
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