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Abstract
PTEN is a tumor suppressor gene inactivated in various human cancers, which antagonizes PI3K activity. The 

PI3K/AKT pathway is frequently activated in cancer, then, the PTEN tumor suppressor may be the major brake of the 
pathway. Cells that lack functional PTEN gene have constitutively higher levels of PIP3 and activated downstream 
targets. The PTEN protein binds to the MAGI proteins (MAGIs), which are scaffolding molecules with PDZ domain 
involved in the regulation of epithelial cell tight-junction assembly. Studies have revealed the potential relevance of 
the PDZ interactions to cancer cell behaviors. The molecular mechanisms contributing to cancer invasion are the 
subject of considerable investigation, as a better understanding of the pathogenesis will lead to the development of 
novel targeted therapies. We review recent studies on the features of PTEN and MAGIs in the signaling pathways 
involved in cancer progression. 
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Abbreviations: ATF2: Activating Transcription Factor 2; GAP:
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Phosphatidylinositol 3,4,5-Triphosphate; PI3K: Phosphatidylinositol-3 
Kinase; PTEN: Phosphatase and Tensin Homologue Deleted on 
Chromosome 10; PTP: Protein Tyrosine Phosphatase; TNF-α: Tumor 
Necrosis Factor- alpha; TSC: Tuberous Sclerosis Complex

Introduction
The PI3K/AKT pathway has been shown to play a pivotal role 

on the initiation and progression of malignancies, enhancing cell 
survival by stimulating cell proliferation, and inhibiting apoptosis 
[1,2] (Figure 1). PTEN modulates the PI3K/AKT pathway in cancers 
within a tumor suppressor network. The tumor suppressor PTEN 
(phosphatase and tensin homolog deleted in chromosome 10) is 
deleted or mutated in a variety of human cancers [3,4]. The implication 
of PTEN in carcinogenesis has been substantiated by the spontaneous 
development of tumors in PTEN deficient mice [5]. The PTEN interacts 
with PDZ domain-containing molecules including MAGI proteins 
(MAGIs), which are scaffolding molecules involved in the regulation 
of tight-junction assembly and are then involved in diverse regulatory 
pathways including the control of cell-attachment [6]. PDZ domains 
are modular protein interaction domains that bind in a sequence-
specific manner to peptides that fold in a beta-finger. The PTEN 
cooperates with MAGIs to block the PI3K/AKT signaling pathway. 
In addition, PTEN plays a critical role in MAGIs-induced inhibition 
of cell migration and proliferation in cancers. MAGI stabilizes PTEN 
[7]. Germ line mutations of PTEN are the cause of PTEN hamartoma 
tumor syndromes (Cowden syndrome, Bannayan-Riley-Ruvalcaba 
syndrome, PTEN-related Proteus syndrome, Proteus-like syndrome) 
with increased risk for the development of cancers [8]. Loss of 
Heterozygosity (LOH) studies suggest that PTEN may play the most 
important role in advanced cancers of particular tissue [9]. Alterations 
of PTEN in tumors are often associated with a poor prognosis [10], 
which may be caused by lack of key interaction partners. The PTEN 
tumor suppressor is recruited to E-cadherin junctional complexes 
through the binding to the second PDZ domain of the MAGI-1b [11]. 

The critical role of the MAGI-1b has been shown in stabilization of 
cell-cell contacts and suppression of cancer cell invasiveness [12]. It 
is conceivable that the signalosome containing MAGIs/PTEN controls 
some of its effector systems. In this review, we summarize the current 
research and our view of how MAGIs and PTEN interact with their 
binding partners to transduce signals downstream and what are the 
implications for cancer-associated biology. We also discuss recent data 

Figure 1: Schematic representation of PI3K/AKT/PTEN signaling. Examples of 
molecules known to act on the regulatory pathways are shown. Note that some 
critical pathways have been omitted for clarity.
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which suggests that MAGIs organize a signalosome via PTEN in cell 
membrane microdomains. Intervention and therapy that modulates 
those mechanisms may serve to better efficacy of new therapeutic and/
or diagnostic approaches against cancer invasion. 

MAGIs Involved in Cancer Development
MAGIs contain six PDZ domains, two WW domains, and one 

guanylate kinase domain (Figure 2). Three closely related MAGI 
proteins, known as MAGI-1, MAGI-2, and MAGI-3, have distinct 
expression of tissue distribution. The role of MAGIs as putative tumor 
suppressor was first suspected since they were the target of some 
oncoproteins. MAGI-1 was identified in mouse as a protein interacting 
with K-Ras [13].MAGI-1 has three splice variants, MAGI-1a, MAGI-
1b, and MAGI-1c of 1139, 1171, and 1374 amino acids respectively [14]. 
They diverge primarily in the carboxyl-terminus downstream of the fifth 
PDZ-domain. Several MAGI-1 binding partners have been found. For 
example, β-catenin and actin-binding proteins act as binding partners 
of MAGI-1 [15,16]. In epithelia, MAGI-1 is localized at tight junctions 
[16]. Interestingly, MAGI-1c is also localized to the nucleus, suggesting 
that MAGI-1 may participate in the regulatory signal transduction 
from the cell surface to the nucleus [14]. In overall, MAGIs are multi-
PDZ domain proteins implicated into protein complex assembly at 
cell-cell contacts. PTEN and MAGI-1b plays an important role in 
stabilization of the cell-cell contacts and suppression of invasiveness 
[17]. The PTEN tumor suppressor is recruited to E-cadherin junctional 
complexes through the binding to the second PDZ domain of the 
MAGI-1b scaffolding molecule, whereas beta-catenin interacts with 
the fifth PDZ domain [17]. TRIP6 also interacts directly with MAGI-
1b by binding to its fifth PDZ domain, whose overexpression in colon 
tumors suggests its critical role in cancer progression [11]. 

Membrane-associated guanylate kinase (MAGUK) proteins bind to 
the MAGI-2 to participate in the assembly of multiprotein complexes 
at regions of cell-cell contact, which contains potential protein-
protein interaction domains and is localized to tight junctions in the 

membrane of epithelial cells [18]. PTEN binds to the MAGI-2 through 
an interaction between the PDZ-binding motif of PTEN and the second 
PDZ domain of MAGI-2 [19]. MAGI-2 suppresses AKT by enhancing 
PTEN function through assembly of a multiprotein complex, which 
may affect the efficiency of signaling at the cell membrane. In addition, 
PTEN is up-regulated after MAGI-2 expression, which is due to the 
enhancement of PTEN protein stability [7]. Consequently, the MAGI-
2-induced inhibition of cell migration and proliferation is attenuated 
with PTEN silencing. Expression of vinculin mutants that reinstates 
the disrupted interactions of beta-catenin with MAGI-2 also restores 
PTEN protein levels [20]. PTEN protein levels are dependent on the 
maintenance of beta-catenin-MAGI-2 interaction, in which vinculin 
plays an important role [20]. MAGI-2 is first detected in junctional 
complexes in podocytes after the migration to the base of the cells [21].

PTEN also binds to the MAGI-3, an inverted MAGUK that localizes 
to epithelial cell tight junctions. MAGI-3 allows for the juxtaposition of 
PTEN to phospholipid signaling pathways involved with cell survival. 
Lysophosphatidic Acid (LPA) is a potent inducer of colon cancer, 
and LPA receptor type 2 is overexpressed in colon tumors. The LPA 
receptor type 2 interacts with the MAGI-3 [22]. The LPA receptor type 
2 is also regulated by several PDZ proteins via modulation of G-protein 
coupling and receptor signaling. The MAGI-3 negatively regulates the 
ability of the LPA-signaling to activate Erk and RhoA [23]. In addition, 
the MAGI-3 activates JNK in conjunction with frizzled-4, and this 
activation requires the small GTPase, Rac. The MAGI-3 may function 
as a scaffold protein for frizzled-4 and several small GTPases to regulate 
the JNK signaling cascade [24].

Function and Characterization for the PI3K/AKT/ 
PTEN 

The PI3K in mammalian cells forms a family that can be divided 
into three classes based on the structure, distribution, and mechanism 
of activation [25]. Class I PI3Ks are divided into class IA and class IB 
based on different associated adaptors. Class IA PI3Ks are activated 

Figure 2: Schematic structures of MAGI, AKT, and PTEN protein. The predicted consensual domain structures for each protein are depicted. The functionally important 
sites including the sites of protein phosphorylation are also shown. Note that the sizes of protein are modified for clarity. PH domain=pleckstrin homology domain; C2 
domain=a protein structural domain involved in targeting proteins to cell membranes; PDZ=a common structural domain in signaling proteins (PSD95, Dlg, ZO-1, etc); 
WW=WW domain (also known as WWP domain) with two highly conserved tryptophans.
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by receptor tyrosine kinases, while class IB PI3Ks are activated by 
G-protein-coupled receptors. These PI3Ks are heterodimers consisting 
of a regulatory subunit such as p85, and a catalytic subunit such 
as p110. The phospholipid second messengers generated by PI3Ks 
provide a common mechanism for multiple steps during intra-
cellular signal transduction. AKT is a major downstream effector of 
the PI3Ks. Human AKT has three isoforms: AKT1, AKT2, and AKT3 
[26]. The PIP3, a product of the PI3Ks, binds to the AKT, which 
leads to its membrane recruitment of the AKT. The PIP3 also binds 
to phosphoinositide-dependent kinase 1 (PDK1) via their plekstrin 
homology (PH) domains, then PDK1 phosphorylates AKT in the 
kinase domain (Thr 308 in AKT1). For the full activation of AKT, 
the phosphorylation within the carboxyl-terminal regulatory domain 
(Ser 473 in AKT1) of AKT by PDK2 is required [27]. Once activated, 
AKT moves to the cytoplasm and nucleus, where it phosphorylates, 
activates, or inhibits many downstream targets to regulate various 
cellular functions involved in cell survival, cell cycling and metabolism 
(Figure 1). AKT inhibits the GTPase-activating protein (GAP) activity 
of the tuberous sclerosis complex 1 (TSC1) and TSC2 complex by 
phosphorylating TSC2 tuberin protein, leading to the accumulation 
and activation of the mTOR complex (Figure 1) [28]. The mTOR 
mediates the phosphorylation of the ribosomal protein S6 kinases and 
eukaryotic translation initiation factor 4E-binding protein 1 leading 
to the release of the translation initiation factor eIF4E [29]. Schematic 
structure of the predicted AKT protein is shown in Figure 2.

PTEN is counteracting one of the most critical cancer-promoting 
AKT signaling pathways. The PTEN is a dual-specificity phosphatase 
which has protein phosphatase activity and lipid phosphatase activity 
that antagonizes PI3K activity [3,30] through converting PIP3 to PIP2. 
PTEN acts as regulator of maintaining basal levels of PIP3 below a 
threshold for those signaling activation. PTEN also plays an important 
role in the induction of apoptotic cell death signals in cells when cells 
lose contact with the extracellular matrix [31]. The human genomic 
PTEN locus consists of 9 exons on chromosome 10q23.3 encoding 
a 5.5 kb mRNA that specifies a 403 amino-acid open reading frame 
[30,32]. The translation product is a 53 kDa protein with homology 
to tensin and protein tyrosine phosphatases. PTEN is ubiquitously 
expressed throughout early embryogenesis in mammals [33]. PTEN 
gene can be up-regulated by early growth regulated transcription factor 
1, peroxisome proliferator activated receptor γ (PPARγ), p53, and 
activating transcription factor 2 (ATF2) [34-37], while transforming 
growth factor (TGF)-β, nuclear factor kappaB (NF-κB), and Jun 
negatively regulate PTEN expression [38-40]. Interestingly, rosemary 
extract represses PTEN expression in K562 leukemic culture cells 
[41]. PTEN activity can be regulated by posttranslational regulation 
including phosphorylation, methylation, acetylation, and oxidation. 
PTEN expression may be lost by the posttranslational mechanisms 
such as methylation. Methylation of the PTEN promoter can result in 
transcriptional silencing of the PTEN gene [42]. Schematic structure 
of the predicted PTEN protein is shown in Figure 2. PTEN protein 
consists of N-terminal phosphatase, and C-terminal C2, and PDZ 
(PSD-95, DLG1, and ZO-1) binding domains. The PTEN CX5R(S/T) 
motif resides within an active site that surrounds the catalytic signature 
with three basic residues, which are critical for PTEN lipid phosphatase 
activity. The structure endows PTEN with its preference for acidic 
phospholipid substrates such as PIP3. Overexpression of PTEN induces 
growth suppression by promoting cell cycle arrest, which requires lipid 
phosphatase activity [43,44]. Overexpression of PTEN also correlates 
with decreased levels and nuclear localization of cyclin D1 [45], a key 
cell cycle molecule regulated by AKT. One mechanism by which PTEN 

induces cell cycle arrest is by regulating AKT activity such that levels 
of the cell cycle inhibitor p27kip1 are increased [46]. Despite the main 
role of PTEN as a negative regulator of the PI3K/AKT pathway, studies 
report a lot of tumor suppressive activities for PTEN that are exerted 
from within the nucleus, where catalysis of PIP3 does not seem to 
represent a dominant function of this enzyme [47]. The nuclear PTEN 
activities may include the regulation of genomic stability, cell cycle 
progression, and gene expression. The C-terminus of PTEN contains 
two PEST (proline, glutamic acid, serine and threonine) sequences 
involved in protein degradation [48]. 

PI3K/AKT/PTEN Pathway Involved in Cancer 
Development

The PI3K pathways are known as regulating metabolism, cell 
growth and cell survival [49]. As an active form of PI3K is an oncogene, 
amplifications and mutations of the PI3K are commonly found in many 
kinds of human cancers [49,50]. The relevance of the PI3K pathway 
in cancer is focused by numbers of components within the cascade 
whose activity is found altered in cancer. Because PTEN protein has 
been shown to play an important role in regulating proliferation and 
invasion of many cancer cells, PTEN is considered as an authentic 
tumor suppressor. Actually, PTEN is one of the most mutated and 
deleted tumor suppressors in human cancer. Loss of heterozygosity 
studies have also suggested that PTEN may play an important role in 
advanced cancers [51]. In addition, alterations of PTEN in tumors are 
often associated with a poor prognosis [52]. As previously mentioned, 
germ line mutations of PTEN are the cause of PTEN hamartoma 
tumor syndromes with increased risk for the development of various 
cancers [8,53]. The PTEN heterozygous knockout mice are able to 
complete embryogenesis, which develop multiple organ neoplasms 
[54]. However, complete inactivation of both copies of the PTEN 
gene results in embryonic death. In contrast, overexpression of PTEN 
induces growth suppression by promoting G1 arrest [55-57]. This cell 
cycle arrest requires lipid phosphatase activity of PTEN and can be 
rescued with the introduction of constitutively active forms of PI3K or 
AKT. Furthermore, PTEN regulates AKT activity so that the cell cycle 
inhibitor protein p27kip1 is increased [46,58].

Increased proliferation, survival and motility are main cellular 
effects associated with the increased PIP3 level that contribute to its 
tumorigenic effects. Actually, dysregulation of the PI3K/PTEN/AKT 
pathway has been found in many malignant cancers. PTEN exerts 
its tumor-suppressive effect by dephosphorylating PIP3, thereby 
negatively regulating AKT activation and the survival pathway. 
Inactivating mutations in the PTEN gene are also common in tumors, 
indicating that elevated levels of PIP3 confer an advantage to cancer 
cells. PTEN deficiency leads to increased cell motility. Reintroducing 
the wild-type PTEN, but not the catalytically inactive PTEN, reduces 
the enhanced cell motility of PTEN deficient cells, suggesting that 
PTEN negatively controls the cell motility [59]. Conversely, an absence 
of PTEN function may allow unregulated cell spreading and invasion, 
which might contribute to metastasis. 

Functional Interplay between MAGIs and PI3K/AKT/
PTEN 

Interplay between MAGIs and PTEN could be at the important 
control machinery for switching between cancer cell survival and death 
(Figure 3). The cross talk may serve as an added regulatory effect on 
the expression of key genes involved in cancer. Disruption of cadherin 
junctional complexes is associated with invasiveness and metastasis, 
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and is the hallmark of neoplastic progression. The stability of these 
complexes is under the control of several signaling pathways, including 
the PTEN tumor suppressor, which antagonizes PI3K activity. PTEN 
interacts indirectly with β-catenin by binding the MAGI-1b. Ectopic 
expression of MAGI-1b potentiates the interaction of PTEN with 
junctional complexes and promotes E-cadherin-dependent cell 
aggregation, which reduces the Src-induced invasiveness of epithelial 
cells. Thus, the recruitment of PTEN at adherens junctions by MAGI-
1b is a focal point for restraining the disruption of junctional complexes 
and the tumor cell invasion. So, MAGIs play an important role in 
stabilization of adherens junctions and suppression of invasiveness 
and metastasis [22,23]. MAGI-1 expression is decreased in cancers, 
which correlates with poor prognosis, suggesting MAGI-1 as a novel 
prognostic marker for cancer. Conversely, overexpression of MAGI-1 
induces stabilization of E-cadherin and β-catenin localization at cell-
cell junctions, enhances actin stress fiber and focal adhesion formation, 
increases cell adhesion to matrix proteins and suppresses anchorage-
independent growth and migration. Actually, MAGI-1 overexpression 
suppresses subcutaneous primary tumor growth, attenuates 
spontaneous lung metastasis, in experimental colon cancer [60]. MAGI-
2 gene has been shown to undergo rearrangement in the genome of 
a melanoma cell line [61]. In principle, genomic rearrangements that 
disrupt PTEN function might dysregulate the PI3 kinase pathway 
in cancers. The discovery of MAGI-2 genomic rearrangements in 
prostate cancer suggests that cross-examining both the PTEN and 
MAGI-2 loci might improve prognostication [62]. MAGI-3 and AKT3 
fusion enriches in triple-negative breast cancer lacking estrogen and 
progesterone receptors and ErbB2 expression. The MAGI-3 fusion 
leads to constitutive activation of the AKT kinase, which is abolished 
by treatment with an ATP-competitive kinase inhibitor.

Perspective
The invasion and metastasis of cancer is a complicated process 

involving multiple factors, in which the first step is the detachment 
of cancer cells from a primary site. The intercellular adherence is 
regulated by a variety of adhesion molecules including MAGIs. It has 
been proven that MAGIs can recruit PTEN to the junctional complex, 
stabilize the conjunction, and prevent the cancer cell dissociation. 
MAGIs scaffolding proteins may play crucial roles in organizing the 
signaling complexes that control cell growth and dissemination. It 
has been suggested the MAGIs expression level is closely correlated 
with the cancer cell invasion (Figure 3). In addition, MAGIs protein 
expression is decreased in cancers. PTEN is recruited to specific 
subcellular microenvironments such as adherens junctions via the 

binding of its PDZ binding motif to scaffolding molecules such as 
MAGI-1b. The involvement of MAGIs and PI3K/AKT/PTEN in 
signaling has remained unexplored, however, MAGIs may inhibit 
several invasion of cancers by regulating PTEN function. The challenge 
for the future is to elucidate the precise spatiotemporal regulation of 
these complexes and the mechanisms by which they transmit signals. 
More understanding of the intracellular mechanisms downstream of 
MAGIs signaling changes in cancer could provide novel insights into 
the development of new therapeutic approaches having greater efficacy 
against cancer invasion and metastasis.
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