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Magnesium (Mg) may enhance physical activity through a number 
of associated mechanisms: all phosphotransfers, a cofactor to over 
325 enzymatic reactions, protein synthesis, and electrolyte balance 
[1,2]. About 60% of adults in the United States do not consume the 
estimated average requirement of Mg, yet widespread pathological 
conditions attributed to Mg deficiency have not been reported [3]. That 
a significant Mg deficiency has not been recognized may be attributed 
to only 1% of Mg is in the serum, therefore, a lack of sensitivity of 
serum Mg. Low dietary intakes, coupled with exercise-induced urinary 
losses, may eventually lead to an Mg deficiency. A deficiency of the 
mineral therefore has many physiological and exercise performance 
implications. 

Further, clinical studies have described Mg influence on immune 
function and inflammation; with low magnesium stimulating 
immunopathological changes that are related to the initiation of a 
sequential inflammatory response. Low serum and dietary magnesium 
levels are strongly correlated with low grade systemic inflammation 
[5-8]. Experimental Mg deficiency produces a clinical inflammatory 
syndrome with leukocyte and macrophage activation, inflammatory 
cytokines released, and excessive production of free radicals. Results 
from animal studies have been corroborated in human responses, with 
Mg deficiency upregulating markers of inflammation and oxidative 
stress [5,9]. Mg deficiency elicits a systemic pro-inflammatory/pro-
oxidant state, involving multiple tissues/organs. 

Hypomagnesemia promotes low-grade inflammation as 
demonstrated by elevated concentrations of C-Reactive Protein (CRP) 
and TNF-α [10,11]. Low Mg is independently associated with elevated 
hsCRP levels [11,12]. Subjects who consume less than 75% of RDA 
were 1.94 times more likely to have elevated serum CRP levels than 
consuming above the RDA [13] and, in another study, the number of 
subjects with CRP > 3 mg.L-1 significantly decreased from the lowest 
to the highest tertile of dietary Mg [14]. Adults who consumed less 
than the Mg RDA were 1.48-1.75 times more likely to have elevated 
CRP than adults who consumed more than the RDA [7]. Additionally, 
low Mg induces increases in circulating substance P that stimulates 
systemic inflammatory stress [15,16].

There are various mechanisms that may explain the role of Mg 
in modulating immune function. Mg potentiates iron–transferrin 
binding, an important contribution to offsetting oxidative stress 
[17]. Mg reduces oxidative stress through stabilization of DNA. [18]. 
However, Mg acts as a natural calcium antagonist and the molecular 
basis for the inflammatory response is most likely strongly linked to the 
modulation of the intracellular calcium concentration [19]. Potential 
mechanisms include priming of phagocytic cells, opening of calcium 
channels, activation of N-Methyl-D-Aspartate (NMDA) receptors, and 
activation of the renin-angiotensin system [20]. Mg deficiency induces 
a systemic stress response through activation of the neuroendocrine 
axis. Mg has a strong influence on both nonspecific and specific 
immune responses, and research shows it is related to inadequate 
cellular and humoral immune responses. The mechanism is postulated 
to be the role of Mg deficiency that leads to the initiation of a sequential 
inflammatory response. Further studies are still needed to better elicit 
the role of Mg in human immune responses.

The specific mechanisms of the inflammatory response in Mg 
deficiency have not been elucidated. However, Mg deficiency results 

in a stress effect and increased susceptibility to physiological damage 
produced by stress. Stress activates the sympathetic nervous system 
and renin-angiotensin-aldosterone axis resulting in increased 
oxidative stress. Aldosteronism is immunostimulatory, as is commonly 
seen in congestive heart failure . The inflammatory syndrome induces 
mechanisms dependent on cytosolic calcium activation. These 
interrelationships support that the Mg effect on intracellular calcium 
homeostasis may be a common link between stress and inflammation 
[21].

Stressors include exercise; especially extreme physical activity of 
any type which may have implications for the immune system. Physical 
exercise may deplete Mg, which together with a marginal dietary Mg 
intake may impair immune function [4]. Strenuous exercise induces 
immunodepression that is multifactorial in origin. Aspects of immune 
function can be depressed temporarily by either a single bout of very 
severe exercise or a longer period of excessive training. Depressed 
immunity may allow an episode of infection, particularly upper 
respiratory tract infections. Thus, the ability to perform physical work 
may be compromised. 

Strenuous exercise induces pyrogenesis and suppresses cellular 
immunity leading to increased susceptibility to infections [22]. A 
common view is that Upper Respiratory Tract Infections (URTI) are 
increased in elite endurance athletes after single bouts of endurance 
exercise and during intensive training. The evidence is inconclusive, 
although exercise does alter the number and function of circulating 
innate immune cells [23]. Lymphocytosis is observed during and 
immediately after exercise, proportional to exercise intensity and 
duration, before returning to resting values normally within 24 
h. Mobilization of T and B cell subsets is largely influenced by
catecholamines. This apparent depression in acquired immunity 
appears to be related to exercise-induced elevated stress hormones. 
Salivary IgA underlying the alterations in mucosal immunity with 
acute exercise are probably under control of the sympathetic nervous 
system. There are numerous examples where exercise alters measures 
of immunity by 15-25% [23]. 

As with Mg studies, inflammatory markers escalate with strenuous 
exercise. CRP and TNFα increased significantly during the two 
weeks of exercise [24]. Four days of increased training load reduced 
running performance and altered the inflammatory response to high-
intensity intermittent exercise [25]. CRP is higher is contact sport than 
noncontact [26] and in exercising females compared to males [27]. 
Differences in the immune responses to exercise between healthy and 
illness-prone athletes may explain the greater incidence of URTI. The 
relationship between resting CRP concentrations and the peak pro and 
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anti-inflammatory responses to exercise supports involvement of CRP 
in the complex network regulating exercise-induced inflammatory 
disturbances [28]. Excessive cytokine release related to overtraining 
[29] may upset the balance between modulation of repair and 
development of inflammation and possible infections.

Other inflammatory markers are influenced by exercise, as 
well. Sprint intervals significantly increase inflammatory mediators, 
specifically IL-1 and IL-6 [30]. Endurance exercise lasting more than 12 
hours showed that intensity, and not duration, is the main determinant 
of the IL-6 response [31]. Intense exercise game activity showed 
increases in serum cortisol and IL-6 and decreases in circulating T 
lymphocytes and natural killer cells, immediately post and 14 h after 
exercise until levels were restored [32]. 

Managing training to preserve immune health requires low to 
moderate volume and intensity [23] with gradual periodized increases 
in training volumes and intensity. Variety may limit stress; avoid 
excessively heavy training loads that could lead to exhaustion, illness 
or injury. Sufficient rest and recovery are essential and identification 
of performance deterioration and physical stress may ameliorate 
extreme immune changes. An appropriate exercise program may avoid 
high catecholamine levels [18,33] and lessen Mg perturbations. It is 
also recommended to give attention to nutritional countermeasures 
to exercise-induced immune perturbations [34]. In general, 
undernourishment is associated with impaired immunity and should 
be addressed. 

Mg improves markers of inflammation and oxidative stress, but 
supplementation studies have yielded inconsistent results [14]. It 
appears that an optimal magnesium intake may also be essential for 
antioxidant protection and for regulation of related responses, although 
more research is needed to describe the underlying mechanisms and 
to identify sufficient magnesium for performance [35,36]. Recently, 
it was shown that dietary magnesium is correlated with strength and 
power outcome measures [37]. In a study that excluded subjects who 
used supplements but controlled for chronic infection or inflammatory 
disease, a decline of serum magnesium with concomitant increases in 
the inflammatory marker, IL-6, were noted after running a marathon 
compared to baseline [38]. The baseline Mg status is implicated in 
whether the athlete will respond to supplementation; but, Mg status 
is difficult to obtain easily as the plasma levels are intransigent except 
for profound deficiency [1]. If Mg levels were so low to elicit defined 
plasma Mg deficiency, there would be severe compromise of physical 
performance. Very few studies have been conducted on this topic of 
Mg, exercise, and immune function combination, to date. However, 
nascent evidence has been published recently that low dietary Mg is 
linked with increased immuno-inflammatory markers and associated 
with oxidative stress, as is intense exercise. Together with the similarities 
in outcomes of low Mg status and strenuous exercise, it is an area that 
warrants further inspection. Mg deficiency in athletes has not been 
robustly investigated regarding alterations in the immune system. The 
possibility exists that magnesium deficiency could contribute to the 
immunological changes observed after strenuous exercise [4]. 
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