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Introduction
Almost 140 years ago, in 1876, changes in the appearance of bone 

marrow were associated with anemia suggesting that some blood 
cells might arise from this source [1]. In 1867 the same author, Prof. 
Cohnheim, had already reported that dye-labelled fibroblast-like cells 
migrated to sites of injury and inflammation during would healing 
processes [2]. He concluded that at least some of the invading cells 
involved in tissue regeneration might be derived from blood or bone 
marrow. Basically a century later, in 1966, Friedenstein described an 
osteogenic population of cells isolated originally from bone marrow 
[3] and several studies from Friedenstein’s laboratory portrayed the
cells, we call MSC today, in more detail [4-6]. Back then of course
an in depth characterization of the expression of cell surface markers
and discrimination between several distinct lines or types of MSC was
impossible for a simple reason. The generation of monoclonal and
highly specific antibodies to defined cell surface structures and proteins
was developed in the seventies and published in 1975 [7]. In addition,
in the first decade of research with this new tool, most monoclonal
antibodies were generated to cells involved in immune responses or
related to malfunction of the immune system. Therefore knowledge on
hematopoietic stem cells (HSC), the expression of cell surface antigens
on HSC or the many blood borne cells in association with differentiation
pathways led the field of cellular research since. Even activation or
inactivation of immune cells during inflammation and infection, in
autoimmunity or in hematopoietic diseases can often be explored with
monoclonal antibodies nowadays. This is different for MSC: Antibodies
to isolate, characterize and possibly even separate MSC from their
progeny, including fibroblasts, osteoblasts, chondrocytes, adipocytes
and others or reagents to distinguish functional subsets within MSC
preparations are not readily available.

But in recent years more and more studies generated a solid 
foundation that differentiation-competent MSC reside not only in bone 
marrow, but also in other tissues and MSC were isolated from different 
origins [8-10]. In 1999 the description of human bone marrow-derived 
MSC (bmMSC) expressing the antigens SH2 (CD105) and SH3 
(CD73), but lack antigens characteristic for monocytes (CD14), HSC 
(CD34, CD133)  or endothelial cells (CD31, CD34) and leukocytes 
(CD45) initiated an avalanche of studies and publications on this 

novel topic [11,12]. The differentiation capacity of MSC to generate 
osteoblasts, chondrocytes and adipocytes in vivo or in vitro [12] was 
corroborated by many studies. Some laboratories claimed an even 
wider differentiation capacity. Among others, generation of muscle 
cells [13], neuronal cells [14] and endothelial cells was described [15]. 
But the overall efficacy of generating differentiated cells from MSC was 
and is very variable [16]. This may be due to several reasons:

i. 	The protocols for in vitro differentiation of MSC are suboptimal.

ii. During in vitro expansion MSC change or lose the original
differentiation capacity [17].

iii. 	Bulk MSC contains distinct subsets of predetermined cells that
preferably differentiate towards one cell line but not to any
other type of cell [18].

iv. Efficient differentiation requires a complex blend of biological,
chemical and physical stimuli, including:

a. Soluble signals (hormones, growth factors, low molecular
weight compounds, O2 and NO-content, etc.).

b. Engagement of the cellular niche (extracellular matrix
composition [19], integrin anchorage of cells, matrix nano-
patterns, cell-cell interactions, etc.) [20].

c. Elasticity of the environment [21].
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Summary
Adult mesenchymal stromal cells (MSC), also referred to as mesenchymal stem cells, were detected almost 

half a century ago in bone marrow and have been studied intensively in the last decade. Different aspects of MSC 
biology were explored and published. Studies pointed to their localization in different organs during development and 
in adulthood and described their characteristics in experimental or clinical investigations. Despite intensive research 
in the field and in sharp contrast to hematopoietic stem cells (HSC), it has become more and more clear that MSC 
lack a unique cell surface marker. MSC not only share cell surface markers with other types of cells, they also share 
many features with pericytes and fibroblasts, including their capability to differentiate into, for instance, osteoblasts 
or adipocytes. In this review we therefore screen the current literature to disclose differences between MSC and 
fibroblasts and also report on common qualities.
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Thus, there is experimental evidence that all of the above contribute 
to MSC differentiation [18,22-24] (Figure 1). However, there is even 
one more important integral element to take into account: the source of 
MSC [25]. Cells sharing many features with MSC can be isolated from 
virtually all tissues even in adult donors [8]. Despite the similarities 
of the MSC derived from different origins, it has been noted that 
the differentiation capacity of MSC varies considerably among cells 
isolated from different sources [25,26]. To shed some light on the 
biology of MSC, consensus conferences coined some criteria to better 
define MSC from bone marrow (bmMSC) [27,28] or placenta (pMSC) 
[29,30]. But an in-depth methodical examination to define MSC from 
adipose (aMSC) [31] or other tissues was not presented [8,25,32-
34]. Although the differences between MSC from different sources 
constitute an interesting field for research and reflection, in this review 
we discuss expression of cell surface markers to discriminate MSC 
from other cells and address the problems and recent studies of multi-
lineage differentiation of both MSC and dermal fibroblasts (DF).

Differences in gene expression

To discriminate human DF from human bmMSC, gene 
expression analyses have been performed [35]. In these studies all 
known transcripts of the whole human genome were investigated 
by a microarray technique allowing an in-depth screening of the 
gene expression of a given sample. The authors report that 64 genes 
defined the molecular signature of MSC in comparison to fibroblasts. 
All gender-related genes were eliminated and a minimum of a 10-fold 
difference in steady-state transcript levels between DF and bmMSC 
was applied [35]. Statistical evaluation of replications of sets of probes 
indicated that the reproducibility was satisfactory (i.e. p 0.065). 
Interestingly, many of the transcripts that were expressed differently 

in DF vs. bmMSC coded for cell membrane proteins. Among them the 
plexin domain-containing protein 1 (PLXDC1, expression ratio MSC 
> DH, 37-fold), also referred to as tumor endothelial marker 7 (TEM7). 
PLXDC1 plays an important role in generation of neovasculature 
and it molds capillary morphogenesis. It is associated with high risk 
of metastases and poor prognosis in patients with osteosarcoma. 
Another membrane protein, N-acetylgalactosaminyl-transferase 
3 (GALNT3, expression ratio MSC > DH, 30-fold), is an enzyme 
involved in oligosaccharide biosynthesis. Mutations of GALNT3 have 
been associated with pathology in mineralization of bone, high risk of 
bone fracture and even mineral deposition in soft tissues (calcinosis). 
Another interesting factor reported to be expressed differently is 
vascular cell adhesion molecule 1 (VCAM1, expression ratio MSC 
> DF, 20-fold) [35]. VCAM1 was given the cluster of differentiation 
(CD) CD106 and in another study a 6-fold higher mRNA expression 
was observed in MSC in early passages [36]. CD106 is expressed by 
endothelial cells in both, large and small blood vessels. It mediates 
the interaction between the vessel wall and different cells and is the 
principle ligand to integrin α4β1 or α4β7. Expression of CD106 was 
reported on MSC from bone marrow [18], placenta [37], but not on 
MSC from adipose tissue [38]. CD106 is normally not expressed on DF 
[39]. Therefore prima vista expression of CD106 seems to discriminate 
between MSC and fibroblasts. We will inspect this hypothesis in the 
next chapter, when we elaborate differences between MSC and DF with 
regard to expression of cell surface proteins.

In addition, fibroblast growth factor receptor 2 (FGFR2, CD332) 
and vascular endothelial growth factor A (VEGFA) were both 
expressed in MSC approximately 10-fold higher compared to DF [35]. 
FGFR2 was associated with regulation of osteogenesis. Therefore an 
elevated expression of FGFR2 on bmMSC is not surprising. Regulation 
of VEGFA is activated in MSC by low oxygen tension [40] and hypoxia 
was shown to facilitate its expression in fibroblasts as well [41]. Hence 
this factor is also not a prime candidate to discriminate DF from MSC.

Expression of transcripts encoding the alpha-11 chain of integrin 
(7-fold) and integrin-like growth factor-2 were also elevated (5-
fold) in early passage MSC compared to DF. In contrast, expression 
of interstitial collagenase (MMP1) and stromelysin (MMP3) were 
elevated 8-and 6-fold in DF compared to MSC, respectively [36].

Regrettably, the studies investigating the transcriptome in MSC vs. 
DF [35,36,42] utilized cells from commercial sources. So the term “early 
passage” has to be put in perspective to the history of the individual 
batch of MSC. Thus, the number of cell divisions prior to the actual 
experiment may vary. Moreover, expansion media and other variables 
influence the outcome of the studies as well. Therefore determination 
of differences between MSC and DF should possibly be standardized 
by defining variances and consistencies between MSC and DF ex vivo. 
Here of course, monoclonal antibodies enter the stage. But isolating 
MSC and especially DF from tissue puts stress on the cell and generally 
involves proteolytic enzymes at some stage. Note that even mild 
proteolysis may harm structures on cell surfaces. Thus, this strategy of 
ex vivo characterization of MSC versus DF has its disadvantages as well.

Surface markers of MSC and fibroblasts

As pointed out above, investigation of the whole transcriptome 
on human MSC and DF to determine differences between these cell 
types is a very interesting scientific challenge, at least scholarly [35]. For 
practical purposes and especially for tissue engineering in a pre-clinical 
or clinical setting, a clear-cut discrimination or even separation of MSC 

osteoblast

adipocyte

Figure 1: Stimuli inducing and modulating the differentiation of 
mesenchymal stromal cells. MSC reside in niches and their proliferation 
and differentiation is regulated by (x) soluble factors, including cytokines, 
hormones, growth factors, and low molecular weight components, by (y) 
the extracellular matrix, its composition and cell-cell interactions, and by 
(z) the elasticity of the niche. The osteogenic differentiation is for instance 
facilitated in a less elastic, rigid environment, in combination with collagen 
signalling, and appropriate cytokines (upper dotted pathway). In a soft, 
more elastic environment, soluble factors and matrix signals will rather 
generate adipocytes (lower dotted pathway) [21]. However, it seems that 
the general direction of differentiation is set by the soluble factors, and that 
the extracellular matrix and elasticity of the niche modulate the efficacy of 
differentiation.
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from fibroblasts, osteoblasts, adipocytes by a cell surface determinant 
would improve our proposition.

According to consensus conferences [27,28,30], bmMSC express 
CD73, CD90, CD105 and lack expression of antigens found on 
monocytes (CD11b, CD14), on HSC (CD34, CD133), endothelial 
cells (CD31, CD133) or on leukocytes (CD45). The bmMSC also lack 
expression of the major histocompatibility antigens HLA class II. 
However, this pattern of expression of cell surface antigens (CD73+, 
CD90+, CD105+, CD11b-, CD14-, CD31-, CD34-, CD45-, HLAclassII-) 
was observed with DF too. But there seems to be at last distinct patterns 
of antigen expression discriminating e.g. bmMSC ex vivo (CD271+, 
TNAP+, SSEA-4-, TRA-1-81- ) [22-24] from other MSC or from DF. 
For instance, adipose tissue-derived MSC express ex vivo and in early 
passages of in vitro cultures CD34 but lack expression of CD271 [43], 
whereas MSC from the amnion membrane express SSEA-4 and TRA-
1-81, but not CD271 [44, 45]. Therefore expression of CD271, TNAP, 
SSEA-4, TRA-1-81, or CD34 can be utilized to at least discriminate DF 
from some MSC ex vivo.

As outlined in the previous paragraph, expression of CD106, 
alias VCAM1, encoding mRNA was significantly different in MSC 
compared to DF [35]. But determination of CD106 by flow cytometry 
reports that only 2% of bmMSC and 10% of pMSC express CD106 
on the cellular surface [46]. On normal DF, CD106 is not detected 
by flow cytometry. But it can be activated by different stimuli [47]. 
Furthermore, on MSC expression of CD106 is fading in vitro [36]. So 
on MSC its expression depends on the culture conditions. Thus despite 
significant differences in mRNA expression rates of CD106 between 
MSC and DF [36], expression of the CD106 protein varies on both 
MSC and DF depending on culture conditions. In addition, DF was 
shown to be differentiation competent [48]. Therefore expression of 
CD106 is not a robust marker to discriminate MSC from fibroblasts.

Recently, fibroblast-activation protein alpha (FAPα) was reported 
to be expressed on bmMSC but not on other bone marrow-derived 
cells [49]. But spontaneous expression of FAPα was rather high in 
normal human DF, although the mean of fluorescence intensity was 
further increased significantly in keloid DF from scar tissue [50]. 
Therefore, as stated for CD106, FAPα seems not to be a feasible marker 
for discriminating MSC from fibroblasts.

Moreover, expression of CD146 was observed on bmMSC, but 
not on DF, osteoblasts, periosteal cells, nor on cells derived from 
fibrotic bone marrow [51]. This suggested that CD146 might serve as 
marker to discriminate MSC form DF. We corroborated that bmMSC 
express CD146 and CD146 was observed on bmMSC at higher levels 
compared to pMSC [26]. But our preliminary studies indicate that 
DF expresses CD146 at levels close to pMSC, at least when expanded 
in the same medium as the MSC (Ulrich, doctoral thesis, Eberhard-
Karls-University, Tübingen, Germany (in preparation)). A current 
compendium on expression of MSC cell surface markers concluded 
that there is great discrepancy in the literature [52]. For science these 
inconsistencies are a challenge tempting our curiosity and therefore 
academic sport. For colleagues involved in tissue engineering and 
production of MSC for therapeutic regimen, lack of clear MSC markers 
become a difficult problem.

Differences in expression of small RNA species

In addition to investigating differences in steady state amounts of 
mRNA between MSC and DF [35,36], differences were also explored 
in the pools of microRNA’s (miRNA) [35]. In contrast to the mRNA, 

which is a complex population of messengers encoding all proteins 
required for proper metabolism, miRNA are non-coding short 
molecules (± 22 nucleotides) that regulate the biological activity of 
mRNA by binding to the 3’ untranslated regions, thus either blocking 
translation or facilitating the degradation of the respective target 
mRNA. Current knowledge suggests that miRNA’s are expressed in 
tissue-specific manner. Thus differences in miRNA signature were 
found for miRNA-335 (ratio bmMSC vs. DF, 44-fold). Thus measuring 
miRNA-335 in cells may help for quality control of bmMSC. It remains 
to be determined if the expression of miRNA’s may help to discriminate 
DF from MSC of different sources including adipose tissue, peripheral 
blood, placenta, amnion membrane, etc. This is of importance as MSC 
maintain a gene expression signature depending on the positioning 
of their precursor cells in the anlagen during embryonic development 
[53]. This miRNA-335 binds to the mRNA encoding a hydrolase 
named MEST or PEG1. Dysregulation of MEST/PEG1 was found in 
cancer cells and genetic deletion of miRNA-335 is very common in 
breast cancer [54].

Raman Spectroscopy for non-contact discrimination of cells

Very recently, a promising study pioneered a novel method to 
discriminate even closely related but still different types of cells: Raman 
spectroscopy [55]. Hereby, live cells are activated via a high-power 
infrared laser beam. The laser photons interact with molecules and 
lift them on high-energy states. When the molecule relaxes it emits 
photons in any direction (scatter), which are detected by sensitive 
photomultipliers or CCD cameras. The intensity and wavelength of 
scattered light is measured. The Raman spectroscopy proved to be a very 
sensitive method as 20 -30 cells per analysis were sufficient to generate 
a spectrum [55,56]. In addition, a single measurement took less than 
2 minutes for data acquisition and did not require time-consuming 
preparations beforehand. Flow cytometry for instance requires several 
steps in preparation of the data acquisition: incubation of cells with 
antibodies, washing and possibly even addition of detection reagents. 
For characterization of MSC we routinely stain 1x105 cells and acquire 
data from 5x104 events. In addition, MSC stained with antibodies often 
can’t be immediately processed for a clinical application. Therefore 
additional steps for removal of antibodies have to be added when 
MSC will be applied to humans after flow cytometry or fluorescence 
activated cell sort (FACS). In contrast, Raman spectroscopy does not 
require any manipulation of the cells to be investigated and, as far as we 
can say today, the infrared laser-based methods seem not to harm cells.

The Raman spectra have also been utilized to investigate live 
cells in tissues [55]. This technique therefore may allow monitoring 
of behavior of MSC in situ during wound healing. Right now we are 
still at the beginning of this development. Therefore we are convinced 
that this Raman technique will soon cross the threshold in the field of 
regenerative medicine and tissue engineering.

Stemness of MSC

The above mentioned experts in grand rounds [30] and consensus 
conferences [27,28] stated that the triple lineage differentiation 
potential of MSC was an important hallmark to better define the 
fibroblast-like MSC. MSC was the acronym for mesenchymal stem cells 
[28]. The terminus “stem cell” is in use for unspecialized cells that can 
differentiate into more specialized cells of one type or several types 
or lineages. A stem cell replaces cells that die or are lost in the body 
and retains lifelong proliferation and self-renewal. In bona fide MSC 
expression of factors characteristic “stemness”, i.e. cell proliferation 
and differentiation such as IGF1, IGFBP4, AKT3, STAT1, STAT4, 
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SMAD3, FZD7, DKK3 were detected [57]. At the same time these cells 
proliferated well in vitro. But this concept of a stem cell maintaining full 
“stemness” at continuous proliferation is not supported by investigation 
of the hematopoietic stem cell niche and HSC therein [9]. The true 
hematopoietic stem cell (HSC) divides in situ very slowly, but expresses 
telomerase at high levels to keep the chromosomal ends complete [58] 
(see below). From this slow proliferating true HSC, rapidly dividing 
progenitor cells are derived which have already lost the full potential 
of the HSC. In vitro a slow proliferating stem cell will be lost between 
the proliferating progenitors cells, unless we utilize a reagent, antibody, 
ligand, feeder cell, or any tool to first select the stem cell specifically 
and then maintain this cell in culture, if possible as a true clone. Such 
a tool, reagent, antibody or alike will be beneficial in discriminating 
MSC or even subsets of MSC from DF. It also will be helpful to better 
localize the true MSC in its niche or niches in vivo. It also may help to 
define MSC satisfactorily for authorities {e.g., EMA (www.ema.europa.
eu), FDA (www.fda.gov)} involved in approval of cell-based therapies.

In contrast to true stem cells, proliferating MSC display signs 
of senescence after repeated rounds of passaging in vitro and fail to 
express telomerase at substantial levels [59-61]. Furthermore, clones of 
permanent cells lines reportedly developed from MSC after long term 
expansion [62]. But they were shown to be contaminants overgrowing 
the original MSC population, at least in some cases [63].

Another problem with the concept of “stemness” of MSC is observed 
with regard to the differentiation potential. MSC from different sources 
display a distinct differentiation potential. For instance, placenta-
derived MSC do not generate osteoblasts efficiently in vitro [26] and 
umbilical cord-derived MSC will not become adipocytes effectively 
[64]. Others reported a preferential chondrogenic differentiation 
potential in MSC derived from synovial membranes [65], but a 
more detailed study revealed later that the in vitro chondrogenically 
differentiated MSC failed to generate a stable cartilage tissue at ectopic 
sites [66]. Therefore the differentiation potential of MSCs depends 
very much on the source of cells and the experimental conditions as 
well. Here, therefore, the aforementioned position signature of MSC 
may come into play [53]. Moreover, MSC change their differentiation 
potential in vitro [17]. Therefore an important criterion to name a cell 
stem cell is not really fulfilled by MSC: long-term self-renewal and 
full differentiation competence at the same time. Consequently at the 
present time the term mesenchymal stromal cell is preferred.

On the other side, fibroblasts were shown to have a differentiation 
potential and generation of adipocytes, chondrocytes and osteoblasts 
[48,67] or adipocytes and osteoblasts [68] was induced from human 
DF (hDF). Moreover, both populations, the adipose tissue-derived 
MSC and the DF expressed factors found in embryonic stem cells [52] 
and hDF seem to express KLF4 at high levels compared to MSC [67]. 
Therefore it seems that hDF share expression of many cell surface 
proteins with MSC, including the markers commonly utilized for 
MSC characterization [27]. In addition, hDF display a tri-lineage 
differentiation potential and are capable of generating colonies in vitro 
[48,67,68]. Although MSC and DF were studied intensively with cells 
from a variety of species, the differences between these two types of 
cells are not yet fully evident.

Conclusion
At present, a simple guide as how to best discriminate human 

mesenchymal stromal cells derived from bone marrow, adipose or 
other tissues from human dermal fibroblasts or fibroblast harvested 
from other source is not at hand. To name a cell a MSC, it must 

fulfill the inclusion criteria [27,28,30] and maintain a differentiation 
potential at least for a few cycles of cell division during expansion in 
vitro. But fibroblasts share many features with “true” MSC, including a 
basic differentiation capacity.

Note that the limited differentiation capacity of some fibroblasts 
or some MSC will be advantageous in a given clinical context: A 
prominent osteogenic differentiation for instance and deposition of 
a calcified extracellular matrix by bmMSC is cumbersome when soft 
tissue such as adipose or muscular tissue needs regeneration or repair. 
In this context autologous dermal fibroblast or placenta-derived MSC 
yield advantages. In the end, the definitive discrimination between 
MSC and fibroblasts seems to be a purely academic matter. It seems 
more important what a given cell will do in vitro or in vivo and for 
which particular experimental or clinical need a given cell really is the 
best component. But in the context of regenerative medicine and for 
cell-based therapies, a defined tool to discriminate MSC from other 
cells would be of tremendous progress. We therefore entertain in our 
laboratory studies investigations using both MSC and DF and utilize 
cells from different niches or tissues, expand the cells under conditions 
compatible to the standards required for clinical application (i.e., good 
medical procedures, GMP) in order to find the best type of cell for a 
given purpose. 
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