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Alzheimer’s disease (AD) is one of the most common 
neurodegenerative diseases, which is characterized by a progressive 
and age-related chronic loss of neurons in extensive brain areas, such 
as cerebral cortex and hippocampus, one of the most prominent being 
the basal forebrain cholinergic neurons (BFCN). In clinic, patients 
suffer from impairment of memory and cognitive function, language 
breakdown and eventually long-term memory loss. The burden of AD 
is heavy to patient’s families and the whole society. The pathological 
findings of AD are senile plaques, neurofibrillary tangles and neuronal 
cell death. Senile plaques and neurofibrillary tangles are mainly 
consisted of β-amyloid (Aβ) peptides, which are formed by the cleavage 
of amyloid precursor protein (APP) by β- and γ-secretase. In the end, 
accumulation of Aβ peptides in neurons causes neuronal degeneration 
and cell death [1,2]. Although previous studies already showed the 
effects of Aβ peptides on cultured mammal neurons, how Aβ peptides 
affect human neurons, especially neurons from AD patients, are still 
not understood. On the other hand, although neurotrophic factors 
application, such as nerve growth factor (NGF) and brain-derived 
neurotrophic factor (BDNF), have showed functional recovery in 
animal model of AD and several drugs for the treatment of AD has 
been approved by FDA and have shown the improvement of cognitive 
function and memory of AD patient, it is still challenge to delay and 
reverse the neuronal degeneration and cell death [3-5].

Neural stem cells (NSCs) have been harvested from mammal brain 
and used for the therapeutic studies of AD [6,7]. But, it is difficult to 
transfer this strategy for clinical application due to limited resource. 
Recent progress in pluripotent stem cells biology makes it possible 
to generate patient-specific induced pluripotent stem cells (IPSCs) 
and induce pluripotent stem cells to differentiate into cholinergic 
neurons. In 2006, Dr Yamanaka’s group developed a novel procedure 
to induce mouse embryonic and adult fibroblasts to dedifferentiate 
into IPSCs using 4 transcriptional factors, Oct4, Sox2, c-Myc, and 
Klf4 [8]. Later on, more and more groups use similar strategies to get 
IPSCs from somatic cells of normal people, even some patients [9-12]. 
This breakthrough makes Dr. Yamanaka to share the Nobel Prize in 
Physiology or Medicine in 2012 with Dr. Gurdon. Here, I will talk 
about the recent progress of modeling and therapeutic studies of AD 
using pluripotent stem cells, including IPSCs and embryonic stem cells 
(ESCs). 

Modeling AD using Pluripotent Stem Cells
IPSCs derived from somatic cells of patients allow us to study 

the effects of genetic changes on the developmental and pathological 
changes of diseases. Yagi et al. [13] firstly generated IPSCs from familial 
AD (FAD) patients carrying PS1 and PS2 mutations and induced 
FAD-IPSCs to differentiate into neurons. In this study, they found that 
neurons derived from FAD-IPSCs carrying PS1 and PS2 mutations have 
increased amyloid β42 secretion. This phenomenon has been found in 
patients’ brain with PS mutations. After applied ɣ-secretase inhibitor, 
Compound E, amyloid β42 secretion decreased [13]. In 2012, Israel et 
al. generated IPSCs from two AD patients carrying the duplication of 
the Aβ precursor protein gene (APPDp). They found that levels of Aβ40, 
phospho-tau and active glycogen synthase kinase-3β (aGSK-3β) were 

higher in IPSC-derived neurons from patients carrying APPDp mutation 
than that of controls. Interestingly, similar phenomena were observed 
in IPSC-derived neurons from sporadic AD patients. They also found 
that the genome of IPSC-derived neurons from one of sporadic AD 
patients had similar phenotypes with FAD samples [14]. Kondo et al. 
[15] generated IPSCs from FAD patients carrying E693∆ mutation and 
sporadic AD and induced IPSCs to differentiate into cortical neurons.
The level of Aβ oligomers in IPSC-derived neurons and astrocytes
carrying E693∆ mutation increased. The accumulated Aβ oligomers
caused endoplasmic reticulum and oxidative stress, which could be
reversed after applied docosahexaenoic acid (DHA) [15]. Cortical
neurons were also generated from Down syndrome-IPSCs (DS-IPSCs) 
and ESCs (DS-ESCs). Cortical neurons derived from DS-IPSCs showed 
that extracellular accumulation of pathogenic Aβ42 in the culture of
cortical neurons derived from DS-IPSCs is much higher than that of
control in the late stage (after day 70). BTA1-labeled amyloid showed
that intracellular and extracellular aggregates of amyloid in DS-IPSC-
derived cortical neurons. To verify this observation, they generated
cortical neurons from DS-ESCs. Extracellular and intracellular Aβ42
aggregation was observed in cortical neurons derived from DS-ESCs.
Furthermore, the distribution of Aβ42 aggregation in cortical neurons
derived from DS-ESCs was similar with that in cortical neurons
derived from DS-IPSCs. These studies illustrated that IPSC-derived
neurons from AD patients can be used to analyze pathological changes 
and screen the drugs for clinical applications [16].

Therapeutic Studies of AD using Pluripotent Stem Cells
Previous studies showed that transplantation of embryonic BFCN 

to hippocampus could improve the ability of learning and memory in 
aged brains or animal models of AD [17]. To obtain large amount of 
cholinergic neurons, the scientists have made a lot of effort to generate 
cholinergic neurons from stem cells. Mouse ESCs were induced to 
differentiate into neurons when they were co-cultured with chick dorsal 
root ganglion (DRG) conditioned medium. Among these neurons, 
around 14% of neurons were cholinergic neurons, which were labeled 
with the anti-ChAT antibody [18]. Manabe et al. [19] reported that 
suppression of L3/Lhx8 in mouse ESCs by siRNA could dramatically 
decrease ChAT positive neuronal differentiation and overexpression 
of L3/Lhx8 could recover this suppression. Their studies showed that 
L3/Lhx8 is an important factor for cholinergic neuronal differentiation 
from ESCs [19]. Except of Lhx8, BFCN also express Gbx1. Bissonnette 
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et al. [20] generated cholinergic neurons from human ESCs by 
overexpression of Lhx8 and Gbx1. Cholinergic neurons derived from 
human ESCs showed functional electrophysiological properties and 
integrated with the neurons in ex vivo slice cultures. 

Pluripotent stem cells have been used for the cell replacement 
therapy of AD. Before transplantation, neuronal precursor cells (NPCs) 
derived from mouse ESCs were treated with growth factors, which 
related to cholinergic neuronal differentiation, such as NGF, sonic 
hedgehog (SHH), retinoic acid (RA) and interleukin-6 (IL-6). Morris 
water-maze and spatial-probe testing showed a significant functional 
recovery in memory deficits of ibotenic acid-lesioned rat model of AD 
after ES-NPCs transplantation [21]. Dr. Zhang’s group developed a new 
protocol to induce human ESCs to efficiently differentiate into medial 
ganglionic eminence (MGE)-like cells after applied high concentration 
of SHH (1000 ng/ml) during neuroepithelia stage around 18 days. In 
the presence of NGF, BDNF, BMP9 and SHH, MGE progenitors could 
be further differentiated into cholinergic- and GABA-neurons. After 
transplantation, ESC-derived MGE could differentiate into cholinergic- 
and GABA- neurons and integrate with host tissue. Furthermore, ESC-
derived MGE transplantation significantly increased the learning and 
memory of AD model [22]. 

Using reprogramming techniques, scientists generated induced 
neurons and induced NSCs (iNSCs) from mouse and human fibroblasts 
[23-26]. NSCs have been used to model neurological diseases 10 years 
ago. Induced cholinergic neurons and cholinergic neurons generated 
from iNSCs will be generated in the future, which will provide us a new 
platform for modeling and therapeutic studies of AD.
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