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Abstract
Natural polyphenols are secondary metabolites of plants involved in the defense against different types of 

stress. Due to their potent antioxidant properties, polyphenols have shown potential health benefits in various 
oxidative stress-associated diseases such as cancer. Polyphenols can induce tumor cell death and interfere with 
carcinogenesis, tumor growth, and dissemination. Understanding of tumor biology, identification of novel molecular 
targets, development of specific antitumor agents, and increase the susceptibility of tumor cells to conventional/
targeted treatments are key points for the achievement of effective anticancer therapies.

This review focuses on the antitumor effect of four well known natural polyphenols targeting apoptosis pathways: 
(-)-Epigallocatechin-3-gallate, resveratrol, curcumin and pterostilbene. In vitro and in vivo studies involving effects 
and mechanisms of polyphenols-induced apoptosis are discussed, as well as different strategies to improve their 
bioavailability, which is a main problem, limiting their therapeutic use.
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Abbreviations:  Apaf-1: Apoptotic Protease Activating Factor-1;
Cyt-c: Cytochrome-c; Bid: Bcl-2 Interacting Domain;  DAPKk1: Death 
Associated Protein kinase 1; DISC: Death Inducing Signaling Complex; 
EGCG: (-)-epigallocatechin-3-gallate; DR: Death Receptor; FADD: 
Fas-Associated via Death Domain; c-FLIP: FADD-like interleukin-
1β-converting enzyme Inhibitory Protein;  Fas: Fatty Acid Synthetase; 
MDM2: Mouse Double Minute 2; PCD: Programmed Cell Death; ROS: 
Reactive Oxygen Species; STAT3: Signal Transducer and Activator of 
Transcription 3;  TNFR: Tumor Necrosis Factor Receptor; TRAILR: 
TNF-Related Apoptosis-Inducing Ligand Receptor; TRADD: Tumor 
Necrosis Factor Receptor-1-Associated Death Domain

Survival through Cell Death Control
It can result paradoxical that stimulation of cell demise may 

facilitate organism survival. However a variety of physiological 
processes, such as germ cells control [1,2], morphogenesis [3-5], tissue 
homeostasis [6], etc. involve a tight regulation of cell death. During 
the past 25 years, Programmed Cell Death (PCD) type I or apoptosis 
has been extensively studied. Although, actually, this natural cell death 
process was already observed 170 years ago, and was considered a 
passive phenomenon linked to the end of functional biological systems 
[7,8]. Kerr, Wylie and Currie, 40 years ago, described the specific 
morphological and biochemical alterations of apoptotic cells under 
physiological conditions [9]. At present, two other (and different) 
forms of PCD have been accepted, autophagy or PCD type II and 
necrosis or PCD type III [10]. 

Apoptosis is derived from an ancient Greek word that seems to 
refer to “leaves falling from a tree” [11]. In contrast to the swelling of 
the cell and its organelles that defines necrosis, the main morphological 
feature of apoptosis is shrinkage of the cell and nuclear fragmentation 
[10]. Besides autophagy is a process in which cells generate energy 
by digesting their own organelles and macromolecules. Thereby 
autophagy allows a starving cell (or a cell deprived of growth factors) to 
survive. Ultimately, cells that do not receive nutrients for a prolonged 
period of time digest their own structures and die [12]. Consequently, 
the existence of alternative mechanisms leading to cell death plays a 
fundamental role in development, environmental adaptations, and 
survival.

According to accepted models, apoptotic cell death can result 

from activation of two different but interrelated molecular cascades. 
An extrinsic pathway transduces the extracellular stimulus, protein 
death ligands, through plasmatic membrane. With our present 
knowledge the death receptor family in charge of starting this extrinsic 
pathway include: Tumor Necrosis Factor Receptor 1 (TNFR), Fatty 
Acid Synthetase (Fas) receptor, Death Receptor (DR) 3, TNF-Related 
Apoptosis-Inducing Ligand Receptor (TRAILR1/R2) or DR4/5 and 
DR6 [13]. Besides, an intrinsic pathway controls and monitors the 
intracellular environment translating this information into integration 
centers, the mitochondria, which evaluate the molecular signals 
leading to death or survival. Proapoptotic signals such as oxidative 
stress, damage in DNA, and alterations in mitochondrial membrane 
trigger apoptosis activation. These two pathways show a convergent 
point where caspases unify the control of the process.

Cell death resistance, as a causal phenomenon linked to abnormal 
regulation of the apoptotic process, is associated with several human 
pathologies such as developmental disorders, immune and degenerative 
diseases, cancer, etc [11]. In particular, the ability to induce PCD under 
control conditions has been one of the focuses for a large number 
of research groups. Indeed, the molecular pathways (extrinsic and 
intrinsic) regulating the apoptotic process are attractive targets for 
potential therapeutic intervention. In this sense, the development of 
agents capable of stimulating or inhibit the action of physiological 
proapoptotic or antiapoptotic molecules, respectively, has received a 
lot of support by the pharmaceutical industry. For instance, the goal of 
proapoptotic drugs is to selectively induce apoptosis in the tumor cell 
while leaving healthy cells unharmed. Several proapoptotic receptor 
agonists have recently been developed, activating selectively the 
extrinsic pathway, and give promising results. Targets for the intrinsic 
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pathway include the Bcl-2 family proteins, the inhibitor of apoptosis 
proteins, the p53 pathway, and many others [14,15].

The large number of publications reflects the impressive research 
work done on cancer and apoptosis. In PubMed more than 100,000 
papers can be found since the publication by Kerr JF et al. of an original 
manuscript describing apoptosis as a basic biological phenomenon 
[9]. Studies involving apoptosis control in cancer therapy have used 
different strategies concerning initiation, progression and/or invasion, 
the three main stages of carcinogenesis. However, the development 
of tumor resistance and the adverse side effects of conventional and 
target-oriented therapies imply the need of novel treatment strategies 
with lower toxicity.

Natural polyphenols, the most abundant antioxidants in human 
diet, have many potential benefits in human health [16]. The 
relationship between natural polyphenols, apoptosis and cancer 
was identified by studies on the ability of these compounds to act 
as cancer chemopreventive and/or chemotherapeutic agents [17-
19]. Polyphenols, in addition to their antioxidant activity and 
among many potential mechanisms, e.g. regulate the expression of 
target genes involved in cell survival and proliferation [20], induce 
different programs of regulated cell death [21], or inhibit matrix 
metalloproteinases [22] and vascular endothelial growth factor 
[23], thus counteracting angiogenesis and affecting to metastasis 
development. The present review will focus on the molecular basis of 
apoptosis induction triggered by different different key polyphenols, 
including resveratrol, curcumin, (-)-epigallocatechin-3-gallate (EGCG) 
and pterostilbene.

Overview of the Apoptotic Pathways in Cancer
The extrinsic pathway is activated when stimulus outside the cell in 

form of specific ligands bind to its corresponding cell death receptors 
located in plasma membrane surface. DRs belong to the TNFR 
superfamily, and are characterized by a Cys-rich extracellular domain 
and a homologous intracellular domain known as the death domain. 
Some examples of DRs are TNFR, TRAIL receptor, and Fas receptor 
(also called APO-1 or CD95) [24]. Moreover there are different adapter 
molecules with death domains, which permit the interaction with DRs, 
such as FADD (Fas-Associated via Death Domain) [13, 25] or TRADD 
(Tumor Necrosis Factor Receptor-1-Associated Death Domain) [25]. 

Fas receptor is activated by binding of the homotrimeric protein 
called Fas ligand, which causes oligomerization of its receptor and 
recruitment of FADD. This protein binds, via death domain motif, to a 
homologous motif on procaspase 8. The complex formed by Fas, FADD 
and procaspase-8 is known as the Death Inducing Signaling Complex 
(DISC) [10,26]. FADD-dependent caspase-8 activation may be blocked 
by FADD-like interleukin-1β-converting enzyme Inhibitory Protein 
(c-FLIP) [27]. Procaspase-8 recruitment drives its activation through 
autocatalysis, whereas Caspase-8 activates downstream Caspase-3 and 
-7 [28]. Activated caspase-8 cleaves Caspase-3, directly and indirectly 
[29]. The indirect mechanism includes the activation of the Bcl-2 
Interacting Domain (Bid), a proapoptotic protein of the Bcl-2 family 
members. Upon Bid cleavage, its carboxy-terminal part migrates to 
the mitochondria where triggers Cytochrome-c (Cyt-c) release from 
mitochondrial intermembrane space. Thus Bid, through its effect on 
the mitochondrial membrane potential, interacts with the intrinsic 
pathway [29]. In the cytosol Cyt-c, Apoptotic Protease Activating 
Factor-1 (Apaf-1), dATP, and procaspase-9 form a supramolecular 
complex called apoptosome that activates caspase-9 through self-
cleavage [13,29]. Caspase-9 cleaves procaspase-3 activating Caspase-3 

[10,13,30]. Therefore, both pathways lead activation of Caspase-3, 
which in turn activates other executer proteases (Figure 1). 

The intrinsic apoptotic pathway involves via the mitochondria and 
is initiated by proapoptotic factors release. These factors either activate 
caspases or enhance caspase activity. The intrinsic or mitochondrial 
pathway may be activated by different causes such as e.g. Reactive 
Oxygen Species (ROS), toxics, drugs, ionizing radiations, etc. The 
activation of this pathway is accompanied of Cyt-c, translocation to 
the cytoplasm, apoptosome formation and caspase-9 autocatalysis [29] 
(Figure 1).

The Bcl-2 family members exert a critical regulatory role 
in determining cellular viability. This family includes the main 
checkpoints to control the evolution of the apoptotic process. In fact, 
the ratio between pro-apoptotic (Bax, Bad, Bak, Bid, Bcl-Xs) and anti-
apoptotic (Bcl-2, Bcl-xL, Bag-1, Bcl-W) members is an indicative of the 
mitochondrial membrane potential status [31,32]. 

Other key molecule in apoptosis regulation is the transcription 
factor p53. The main role of p53 is the protection against genomic 
instability and tumorigenesis [33]. Functionally promotes survival 
by activating checkpoints and facilitating damage repair [33-35], 
sustained proliferation blocking [33,36] and apoptosis [33,35-37]. 
Tetramerization of p53 monomers is essential for its ability to positively 
regulate transcriptional activation of a large number of targets including 
its downstream effector p21WAF1, and the proapoptotic proteins Bax, 
PUMA, and Noxa [37,38]. On the other hand, p53 negatively regulates 
the transcription of a large number of antiapoptotic genes such as Bcl-2 
[39], Mcl-1 [40] and survivin [41].

The tumor suppressor P53 is involved in multiples cellular processes 
and in the response to a variety of stresses, including DNA damage. 
DNA-damaging agents and other stress stimuli stabilize and activate 
P53, present at low levels in resting cells, through post-translational 
modifications that release it from MDM2 (mouse double minute 2 but 
used interchangeably to denote human also), a ubiquination ligase that 
ubiquitinates it prior to proteasome degradation [33].

NFκB is a transcription factor associated with many physiological 
processes such as, inflammation, cellular proliferation and cancer [42]. 
NFκB, a heterodimer composed of p50 and p65 subunits, is sequestered 
in the cytosol in an inactive form upon interaction with I-β-B [43]. 
Different factors can trigger its activation, i.e. free radical, tumor 
promoters, cytokines, UV light, endotoxins, etc. After stimuli, I-β-B 
is phosphorylated and removed by the proteasome, which facilitates 
NFκB translocation into the cellular nucleus and its consequent activity 
as gene expression regulator [44].

Natural Polyphenols and their Benefits for Human 
Health

Natural polyphenols are a very large group of plant-derived 
compounds structurally characterized by the presence of two or 
more phenol units [45]. The most chemistry aware definition of the 
polyphenol term (known as the White–Bate-Smith–Swain–Haslam 
definition) describes the class as (i) generally moderately water-
soluble compounds, (ii) with molecular weight of 500–4000 Da, (iii) 
>12 phenolic hydroxyl groups, and (iv) 5–7 aromatic rings per 1000 
Da, where the limits to these ranges are necessarily somewhat flexible 
[46]. However, this type of definition does not include lower molecular 
weight structures, which have been shown to have potential benefits 
for human health. In practice, this implies a less rigorous use of the 
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polyphenol term toward the lower molecular weight end of the range. 
As a consequence, there are several thousand compounds in higher 
plants of potential biological interest with one or more aromatic rings 
and at least two hydroxyl groups, thus qualifying as polyphenols [47].

Natural polyphenols are secondary metabolites in plants which 
are produced as a defense against different types of stress, e.g. 
ultraviolet radiation, aggression of pathogens, low soil fertility, 
changes of environmental temperature, severe drought, and grazing 
pressure [45,48]. Depending on their basic chemical structure, four 
main classes are considered: phenolic acids, flavonoids, stilbenes, 
and lignans [48,49]. The knowledge and implications of these 
compounds in human health include beneficial effects in cancer [50-
52], neuroprotection [53,54], cardiovascular system dysfunction and 
damage [47,55], the metabolic syndrome [56,57], diabetes [58], aging 
[59,60], and different inflammation-related pathologies [60]. Due to 
all these benefits, polyphenols have been used for thousands of years 
in traditional eastern medicine. Nevertheless incorporation of these 
compounds to western medicine is still a pending issue, likely because 
poor oral bioavailability strongly limits their potential effects [61]. In 
fact, and generally speaking, correlations between in vitro effects and in 
vivo findings are, at present, poorly established. 

Natural Polyphenols and Apoptosis Targeting in 
Cancer Cells

Cancer can be viewed as a complex cellular phenotype which is 
associated with unlimited replicative potential, independence from 
growth signals and parallel resistance to growth-inhibitory signaling, 
evasion of cell death activation, sustained angiogenesis, as well as the 
ability of tissue invasion and metastasis [62]. Malignant tumors are 
invasive, and may metastasize to distant sites through the circulatory 
system. Consequently, metastatic spread, not the primary tumor 
burden, is the main cause of cancer-related deaths [63].

At present, strategies of cancer treatment using the combination 
of targeted therapies and established/conventional chemotherapies or 
radiotherapies are considered more promising, and may lead to greater 
efficacy and better survival [64]. Nevertheless, malignant cells may find 
alternative survival mechanisms. Indeed, changing conditions within 
tissue microenvironments, systemic/intra-organ signals, immune cells 
attack, or therapy-related cancer cell stress, may cause alterations in the 
genomic/proteomic profile of metastatic cells leading to either cancer 
suppression or survival. It is in this general scenario where natural 
polyphenols, which have been shown to interfere with carcinogenesis 
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[65,20], tumor growth [50] and dissemination [66,67], may be 
potentially useful. For instance, early reports have suggested that 
polyphenols have protective effects in the development of pulmonary 
neoplasia [68,69]. In addition, they are able to inhibit lung carcinoma 
cell proliferation and metastasis by different mechanisms [70-73]. It 
has been reported that tea polyphenols and atorvastatin synergistically 
inhibit chemically-induced murine lung tumorigenesis and the growth 
of lung cancer H1299 and H460 cells, possibly through enhanced 
apoptosis [74]. Another recent report shows that epicatechin enhances 
the induction of growth inhibition and apoptosis in human lung cancer 
cells by curcumin [75]. Thus, suggesting possible application in lung 
cancer therapy. 

(-)-Epigallocatechin-3-gallate (EGCG), (abundant in green 
tea), curcumin (a major component of turmeric), and resveratrol (a 
phytoalexin found in grapes, red wine and mulberries), have been 
shown effective in the treatment of metastatic prostate cancer with 
therapeutic resistance. In vitro studies show that EGCG, curcumin or 
resveratrol sensitize LNCaP prostate cancer cells to TRAIL-mediated 
apoptosis through modulation of the extrinsic apoptotic pathway [76-
78]. Moreover, EGCG reduces endogenous lipid synthesis, inhibits 
cell growth and induces apoptosis by inhibition of Fas in cells with 
high levels of Fas activity such as LNCaP (an effect not observed in 
non-tumoral cells) [79]. Furthermore, polyphenols can also induce 
apoptosis by intrinsic pathway. Resveratrol induces apoptosis through 
the intrinsic pathway. For instance, resveratrol induces apoptosis in 
prostate cancer-derived cell lines by activating caspases-9 and -3 and 
by changing the Bax/Bcl-2 ratio [80]; and similar effects were observed 
with EGCG, curcumin [76,81], or pterostilbene [82,83] in different cell 
types.

Recently, preclinical experiments using human HT-29 colorectal 
xenografts, have shown that combined administration of pterostilbene, 
quercetin, FOLFOX6 (oxaliplatin, leucovorin, and 5-fluorouracil; 
a first-line chemotherapy regimen), and radiotherapy eliminates 
growing tumors in vivo leading to long-term survival (>120 days). 
Antisense oligodeoxynucleotides against human superoxide dismutase 
2 and/or ectopic Bcl-2 overexpression avoided polyphenols- and 
chemoradiotherapy-induced colorectal cancer elimination; thus 
suggesting SOD2 and Bcl-2 as key targets in the mechanism [84]. 
Furthermore, some early reports suggested that oral administration of 
green tea polyphenols, even at low doses, was effective in preventing 
chemically induced colon carcinogenesis by inhibiting angiogenesis 
and metastasis, and by inducing growth arrest and apoptosis through 
regulation of multiple signaling pathways [85,86]. These results suggest 
that administration of polyphenols may facilitate colorectal cancer 
regression in vivo.

Therefore, administered alone, in combination with conventional 
chemoradiotherapy, or with other polyphenols (using topic, oral, 
intraperitoneal injection, or intravenous administration), polyphenols 
appear active to prevent the appearance and spread of cancer. 
Moreover, in this anticancer activity, induction of apoptosis appears 
to play a relevant role. Due to the complexity of the effects induced by 
each particular polyphenol our subsequent analysis will focus on some 
specific polyphenols, all particularly relevant for their potential clinical 
applications. Recently, our group has published a review on natural 
polyphenols and their application in oncotherapy, where clinical trials 
involving 3 of those specific polyphenols mentioned (resveratrol, 
curcumin, and epigallocatechin-3-gallate) have been discussed [87].

Due to the large number of polyphenols with potential anticancer 
properties, we have focused only on examples involving active clinical 

trials according to the US NCI (http://www.cancer.gov/clinicaltrials). 
Nevertheless, reported effects claimed for polyphenols must be carefully 
evaluated as one finds differences (even large and controversial) 
depending on the type of cancer cell, the experimental in vitro or in 
vivo conditions, the concentrations/galenic formulations/nanoparticle 
associations used. 

Resveratrol
Resveratrol (3,5,4’-trihydroxystilbene), a naturally occurring 

phytoalexin produced by plants in response to damage, possess 
important antioxidant, anticarcinogenic, and antitumor properties. 
It was first detected in dried roots of Polygonum cuspidatum. It is a 
member of the stilbene family and can be found in isoforms cis- and 
trans-, being trans-resveratrol is the more abundant natural isoform [88, 
89]. The ability to induce carcinogenic inhibition was reported in 1997 
by Jang et al. [19]. Resveratrol was found to act as an antioxidant and 
antimutagen and to induce phase II drug-metabolizing enzymes (anti-
initiation activity); it mediated anti-inflammatory effects and inhibited 
cyclooxygenase and hydroperoxidase functions (antipromotion 
activity); and it induced human promyelocytic leukemia cell 
differentiation (antiprogression activity). In addition, it inhibited the 
development of preneoplastic lesions in carcinogen-treated mouse 
mammary glands in culture and inhibited tumorigenesis in a mouse 
skin cancer model [19]. Although, nowadays, the antitumor effects 
of resveratrol are still incompletely understood, there are numerous 
evidences in different types of cancer (melanoma, prostate, leukemia, 
colon, breast, lung…) that show the capability of this polyphenol to 
induce apoptosis [90-96]. The proapoptotic stimulation has been 
associated to cell cycle alterations [95,97], caspase activity induction 
[92,95, 97,98], downregulation of Bcl-2, Bcl-xL, Survivin and XIAP 
levels [99], upregulation of Bax levels [98, 99], Bak, PUMA, Noxa, Bim, 
TRAIL-R1/DR4 and TRAIL-R2/DR5[101]. Interestingly, a number of 
these effects may be correlated with P53 activation [92,97-98]. 

The stabilization and activation of P53 depends on both acetylation 
and phosphorylation modifications that determine the binding to 
DNA. Phosphorylation of P53 prevents the binding with MDM2 
[33] and facilitates the acetylation of P53 at a C-terminal lysine [100]. 
P53 acetylation increase sequence-specific DNA binding and recruits 
coactivators/histone acetyltransferases such as CREB-binding protein/
p300 [101]. Resveratrol induces P53 phosporylation in N terminal 
serine 15 (Ser-15) [102,103] and C-terminal serine 392 (Ser-392) [102], 
and acetylation [104] are induced. Moreover, treatment of a mutant P53 
prostate cancer DU145 cells with resveratrol induced phosphorylation 
of Ser-15 which restored wild-type P53 DNA binding [103,105] and 
P53 acetylation [104], activating pro-apoptotic events. In addition, it 
has been shown, in MCF7 breast carcinoma cells, that resveratrol also 
phosphorilates Ser-15 and induces expression of various P53-regulated 
proapoptotic proteins (p21, Bax, and Fas), caspase 8/9 activation, and 
decreases Bcl-2 expression [105].

It has been postulated that some resveratrol-induced anticancer 
effects are due to its capacity to inactivate NFκB -dependent signaling. 
Resveratrol inhibits IKK mediated IβB phosphorylation by stimulating 
the retention of NFκB in the cytosol and its subsequent inactivation 
[106,107]. Furthermore, resveratrol inhibits proliferation, causes cell 
cycle arrest, suppresses NFκB-dependent signals related to proliferation 
and survival [108, 109], and blocks the activation of NFκB induced by 
heme oxygenase 1, IL-1α and TNFβ [108,110,111].

(-)-Epigallocatechin-3-gallate
Green tea (Camelia sinensis) is a popular beverage being, after water, 

http://www.cancer.gov/clinicaltrials
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the most habitual liquid consumed worldwide. The main antioxidative 
ingredients in the green tea extract are catechins, which comprise four 
major epicatechin derivatives; namely, epicatechin, epigallocatechin, 
epicatechin gallate, and EGCG [112]. Other components include three 
kinds of flavonoids, known as kaempferol, quercetin, and myricetin 
[113].

Catechins, have been shown to have potential health benefits in 
e.g. diabetes, Parkinson’s disease, obesity, Alzheimer’s disease, or 
cancer [114]. Numerous scientific publications suggest that EGCG 
([(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)chroman-3-yl] 
3,4,5-trihydroxybenzoate), the major catechin in green tea [115,116], 
may be the main responsible for the majority of the health benefits 
attributed to tea consumption [89].

Epidemiological, cell culture, animal, and clinical studies link 
the antitumoral ability of EGCG to its ability as antioxidant [117], 
cell proliferation inhibitior [117], tumor promotion blocker [119], 
apoptosis inducer, and angiogenesis and metastases suppressor [36,44].

NFκB is an oxidative stress-sensitive transcription factor, frequently 
overactivated in cancer cells, which may be inactivated by EGCG 
[44]. Apoptosis induction by EGCG through NFκB inactivation has 
been associated with an enhancement of phosphorylation-dependent 
degradation of IβB, increases in nuclear translocation of p65 and 
inhibition of IKK [119]. The induction of negative regulators of the 
cell cycle may be the consequence of this inhibition. EGCG would 
then act as an apoptosis inducer in a mechanism involving decreased 
expression of cyclin D1, cyclin E, CDK2, CDK4, CDK6, and the 
phosphorylation of retinoblastoma protein [44]. Furthermore, NFκB 
promotes transcriptional up-regulation of the antiapoptotic proteins 
Bcl-2 and Bcl-XL. Threfore EGCG, through negative regulation on 
NFκB, can decrease the levels of anti-death proteins and thereby 
favor apoptosis induction [120]. Besides, EGCG may enhance the 
expression of proapoptotic proteins and caspase-3 activity [121] and 
p53 stabilization [81], thus further favoring apoptosis.

Curcumin
Curcumin, a phenolic compound derived from rhizome of the 

plant Curcuma longa, is a spice originally used in India to add a 
specific flavor and yellow color to food. In nature curcumin [bis-(4-
hydroxy-3-methoxyphenyl)-1,6-diene-3,5-dione, commonly called 
diferuloylmethane] is a bis-α,βunsaturated β-diketone exhibiting a 
keto-enol tautomerisms that coexists at equilibrium in plants [122]. 
This substance has been traditionally used, as an anti-inflammatory, 
in eastern medicine [122,123]. Nowadays, due to its health benefits 
and the results obtained in clinical trials, curcumin has received the 
GRAS status (generally recognized as safe) by the U.S. Food and Drug 
Administration [123].

Curcumin has potential anticancer activity due to its antiradical, 
immunomodulatory, antiangiogenic properties, antiproliferative, and 
proapoptotic acting at multiple levels via pleiotropic effects on genes 
and cell signaling pathways [89, 123]. The antioxidant activity can 
arise from either the hydroxyl group or the methylene group of the 
β-diketone moiety [124,125]. In vitro and in vivo experiments have 
shown the ability of curcumin to sensitize tumor cells to TRAIL-
induced apoptosis, inhibit NFκB activity, and downregulate expression 
of the antiapoptotic Bcl-2, Bcl-xL, and XIAP proteins [126,127]. 
Moreover, curcumin upregulates expression of P53, Bax, Bak, PUMA, 
Bim, NOXA and death receptors DR4 and DR5, triggering activation 
of caspase-3, -9 [77], -7, and inducing polyadenosine-5’diphosphate-

ribose polymerase (PARP) in e.g. mantle cell lymphoma and multiple 
myeloma cell lines [128,129].

The Death Associated Protein kinase 1 (DAPKk1) is a well-
known tumor suppressor gene with pro-apoptotic properties 
[130,131] that is down-regulated in many human cancers. Indeed 
promoter hypermethylation reduces expression and function of 
DAPk1 in numerous cancer cells [132]. Recently, Wu et al. [133] have 
demonstrated that curcumin modulates gene expression in glioblastoma 
U251 cells and increases cellular levels of DAPk1 [133]. Although there 
are contradictory results on the relationship between DAPk1 levels 
and NF-κB activity [134,135], Wu et al. [133] show that knockdown 
of DAPk1 expression rescues the inhibitory effect of curcumin 
on NF-κB phosphorylation. Thus, to avoid the inhibitory effect of 
curcumin on NF-κB DNA-binding activity, Wu et al. illustrates how 
DAPk1 knockdown, after curcumin treatment, reduces the activation 
of caspase-3 in U251 cells [133]. Moreover, Signal Transducer and 
Activator of Transcription 3 (STAT3), a transcription factor that plays 
an important function in cell growth and apoptosis regulation and is 
constitutively activated in glioma cells [136], is inhibited by curcumin 
[133]. The authors suggest that inactivation of STAT3 is attenuated 
by DAPk1 knockdown, thus indicating the connection between both 
factors [133]. So, although further investigations are required to know 
the exact mechanisms underlying DAPk1 regulation by curcumin, 
pro-apoptotic effects of curcumin involve DAPk1 overexpression 
regulating STAT3 and NF-κB pathways and caspase-3 inhibition [133].

Pterostilbene
Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is natural 

resveratrol analogue but significantly more bioavailable in plasma when 
ingested [137]. As is the case with resveratrol it is also found in the 
grape skin, although most abundantly in blueberries [137]. Although 
their pharmacological properties are very similar, pterostilbene 
presents several advantages over resveratrol. The two methoxy groups 
of the pterostilbene molecule increase its lipophilic character and 
oral absorption, and facilitate its cellular uptake [137]. Actually, the 
difference in chemical structure is extremely important since stilbene 
bioactivity and bioavailability are tightly correlated issues.

Pterostilbene has been shown to induce apoptosis in different 
cell lines both in vitro and in vivo experiments. It is able to induce 
mitochondrial membrane depolarization with a subsequent activation 
of the caspase cascade in cancer cell lines from different origins. 
Breast (MCF7) [83,95,138], bladder (T24) [139], colon (HT29) [95], 
myeloid leukemia cells (HL-60, K562) [140], human T lymphoma 
(HUT78) [140], multidrug resistant myeloid cell lines (HL60-R, 
K562-ADR) [140], lung cancer cell lines (A549, H460, SK-MES-1) 
[97,143], melanoma (A375, SK-MEL-2, MeWo) [95,144], pancreatic 
cancer (MIA PaCa, PANC-1)[143], prostate (PC3) [83], and human 
gastric carcinoma cells [145]. Furthermore, pterostilbene reduces the 
levels of antiapoptotic proteins Bcl-2 [84, 85, 141] and Bcl-xL [141] 
and upregulates the proapoptotic proteins Bax [82-84,144], Bak [83], 
Bad [83, 144], and Bid [84]. Although these results are consistent with 
activation of the intrinsic pathway, the apoptotic mechanisms induced 
by pterostilbene are not completely understood. To determine whether 
pterostilbene-induced apoptosis is limited to the mitochondria-
dependent pathway, a Caspase-9 inhibitor (z-LEHD-fmk) and a 
pancaspase inhibitor (z-VAD-fmk) have been used in combination 
with pterostilbene. The results of combined treatments did not prevent 
apoptosis induction in leukemia, melanoma, lung, colon or breast 
cancer cell lines [95,140]. Thus, suggesting that pterostilbene induces 

file:///D:/Total_Journals/JNT/JNTVolume.3/JNTVolume3.1/JNT3.1_AI/l 
file:///D:/Total_Journals/JNT/JNTVolume.3/JNTVolume3.1/JNT3.1_AI/_ENREF_84


Page 6 of 10

Citation: Rodríguez ML, Estrela JM, Ortega ÁL (2013) Natural Polyphenols and Apoptosis Induction in Cancer Therapy. J Carcinogene Mutagene 
S6: 004. doi:10.4172/2157-2518.S6-004

J Carcinogene Mutagene            ISSN:2157-2518 JCM, an open access journal Apoptosis

apoptosis through a caspase independent mechanism. In fact, studies in 
stomach cancer and leukemia cells show that pterostilbene induces the 
Fas receptor-mediated mechanism of apoptosis (extrinsic pathway), 
which suggest that a dual mechanism may coexist [140,144]. Other 
studies demonstrate the ability of pterostilbene to inhibit cell growth 
by inducing cell cycle arrest [84,95,140] and to alter expression of cell 
cycle regulators such as P53 and retinoblastoma protein. Nevertheless, 
anticancer effects of pterostilbene are far of being completely 
understood. Apoptosis and autophagosome accumulation in cancer 
cells of various origins are not determinant in cell demise. Pterostilbene 
promotes cancer cell death via a mechanism involving lysosomal 
membrane permeabilization, and different grades of susceptibility 
were observed among different cancer cell lines depending on their 
lysosomal heat shock protein 70 (HSP70) content (a known stabilizer 
of lysosomal membranes) [95].

In vivo Administration, Metabolism, and Bioavailability
Although dietary phenolics show diverse pharmacological 

potentials, their poor oral bioavailability minimizes, and even precludes, 
real efficacy as therapeutic agents [145]. Most orally administered 
polyphenols cannot be absorbed from the intestine in their native 
form, so they are rapidly and extensively conjugated before to gain 
access to the blood circulation. Coexisting compounds in the lumen, 
inhibition of digestive enzyme activity and/or alteration of intestinal 
transport system can modulate their intestinal absorption [47]. Once 
absorbed, polyphenols are further metabolized in the liver [146] and 
then eliminated through urine and bile. 

Polyphenols are subjected to 3 main types of conjugation: 
methylation, glucuronidation and sulfation [147]. This extensive 
conjugation followed by a rapid excretion of the conjugated metabolites 
is responsible of their poor bioavailability.

In the case of methylations, some polyphenols contain 
O-methylations in its native form. While some studies suggest 
that multiple enzymes-mediated methylations can increase the 
bioavailability of polyphenols, other studies indicate a marked decrease 
in the anticancer benefits of methylated polyphenols [82,148,149]. On 
the other hand, glucuronidation and sulfation represents the main 
clearance pathways for most polyphenols. Glucuronidation is mediated 
by UDP-glucuronosyltransferases (UGT) [145], but it has been shown 
that glucuronides of different natural polyphenols are biologically 
much less active than their native form [145,147]. Sulfation, is catalyzed 
by sulfotransferases (SULTs) and, as it occurs with glucuronidation, 
sulfated metabolites also loss biological activities as compared with the 
natural structures [150].

Taken together all available experimental data indicate that 
polyphenol aglycones, when absorbed by intestinal enterocytes, 
undergo extensive phase II metabolism via UGT isoforms which 
markedly decrease the amount of unconjugated/natural compounds 
reaching the systemic blood circulation [145]. Moreover, hydrophilic 
polyphenol conjugates need carriers to cross the enterocyte membrane 
on the luminal (MRP2) and the serosal side (MRP3 and MRP4) [151]. 
However, these limitations can be circumvented by intravenous 
administration. Once in the blood circulation, polyphenol aglycones 
reach the liver, where they are rapidly metabolized to methylated, 
glucuronidated, and/or sulfated conjugates.

Due to the extensive conjugation of natural polyphenols, glucuronic 
and sulfate conjugates have been proposed as potential responsibles 
of some polyphenols-induced effects. In fact, numerous studies have 

been conducted with some polyphenols as resveratrol [152-155], 
quercetin [156-159], curcumin [160,161] or EGCG [162,163] and their 
metabolites in order to test and compare their effects. Therefore, with 
only a very few exceptions, most available data indicate that natural 
polyphenols are biologically more active than their metabolites.

In addition to their rapid metabolism, under in vivo conditions, 
the chemical stability and solubility of polyphenols are critical, as they 
have limited water solubility. These factors further complicate the 
use of natural polyphenols in a clinical setting [164]. Currently, there 
are some challenging works aimed to improve bioavailability using 
delivery systems such as liposomal formulations [165], nanoparticles, 
microemulsions and polymeric implantable devices which have 
demonstrated to deliver therapeutic concentrations of various 
polyphenols into the systemic circulation [166]. 

Conclusions
The identification of key molecular components in the apoptotic 

pathway has provided rationale targets for the development of new 
anticancer therapeutics. However, synthetic molecules are not the only 
alternative. Evidences from experimental in vitro and in vivo studies, 
and a few clinical trials, suggest polyphenols as effective anti-cancer 
agents, both in the form of nutritional supplements or functional 
foods, and as potential anticancer drugs. Some mechanisms by which 
polyphenols have been shown to prevent carcinogenesis include 
inhibition of pro-inflammatory molecules generation, oxidative 
stress, DNA damage, and cancer cell proliferation, and by increased 
apoptosis. In addition, polyphenols show synergic/additive effects if 
administered (as a complementary adjuvant therapy) in combination 
with conventional anticancer chemotherapy and/or radiotherapy. 
Polyphenols such as resveratrol, EGCG, curcumin and pterostilbene, 
have been shown to promote extrinsic and intrinsic apoptosis 
induction in different types of cancers (e.g. colon, lung, prostate, breast, 
melanoma or leukemia). Upregulation of proapoptotic proteins, 
downregulation of antiapoptotic proteins, NFκB induction, and p53 
activation, are key mechanisms underlying the ability of polyphenols to 
induce apoptosis in cancer cells. However, more studies must be done 
to fully understand how polyphenols may be used to induce cancer cell 
apoptosis under in vivo conditions. Parallely, improvements in delivery 
systems to increase their bioavailability, stability, and solubility, are 
necessary in order to make possible the use in clinical settings.
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