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For the creation of a theory the mere collection of recorded 
phenomena never suffices – there must always be added a free invention 
of the human mind that attacks the heart of the matter. 

-Albert Einstein

 Although it is now known as a common term for almost two decades,
‘Tissue Engineering’ (TE) still can be considered to be a comparatively 
young field of basic and applied multidisciplinary biomedical research. 
It utilizes the principles and methods of engineering and life sciences 
combined with clinical expertise toward the development of biological 
tissue substitutes to restore, maintain or improve the function of 
diseased or damaged human tissues is currently leaving its eggshells 
behind [1]. Without doubt the collaboration of scientists from many 
various disciplines has led to the development of a multitude of brilliant 
inventions, latest research tools and scientific techniques which are now 
constantly incorporated in this yet growing scientific field [2]. Whereas 
the first clinically relevant efforts in TE were based on the generation 
of bioengineered skin substitutes for severely burned patients, the 
field has significantly evolved over the past 20 years with an enormous 
extension of ideas and application of these principles to a wide variety 
of tissues and organs. Typical examples of tissue engineered substitutes 
that have been and still are currently being investigated (- and have 
in part already been clinically applied -) throughout the world now 
include skin, cartilage, bone, blood vessels, pancreas, heart valves, 
breast, nerves, trachea, bowel, kidney, lung and liver. This went along 
with an increase in engineering a multitude of different biomaterials 
as potential cell-seeding-scaffolds on the one hand and sophisticated 
techniques on the other hand with regard to various culture media and 
two- and three dimensional cell cultures as well as the establishment 
of bioreactors. On this way the capacity of cell renewal even in adult 
and differentiated cells has led to new insights into the “stem cell 
potential” of adult mammalian cells, especially mesenchymal stem 
cells that are now a common topic in TE. In addition to this the ever 
increasing knowledge about embryonic stem cells (ESC) has added one 
more dimension to foster tissue and organ regeneration alone or in 
combination with TE techniques [3]. However, ethical issues with the 
use of ESC have not been fully discussed (zitation horch ethical issues). 
This shows that new tools are constantly integrated into common TE 
approaches which are merging the field more or less into the term 
Regenerative Medicine (RM). The concept of RM is a fascinating and 
a fast-moving subject matter, since it can been observed as a rapidly 
growing and fast-moving interdisciplinary field of studies, involving 
stem cell research, tissue engineering, biomaterials, would healing, and 
patient-specific drug discovery [4-6].

There was considerable initial enthusiasm and many promising 
achievements during the pioneering phases similar to any emerging area 
of science, that, however, were followed by several drawbacks during 
the translation into clinical applications. When it came to the clinical 
implantation of cultured tissue surrogates, the practical performance 
proved much more challenging than was initially estimated. However, 
such seemingly unforeseen obstacles paved the way for new solutions. 
Even in seemingly simple TE substitutes such as epithelial sheet grafts 
without necessary three-dimensional vascular (micro) networks new 

alternatives for cell and tissue delivery from the laboratory were created 
[7]. Instead of transplanting readymade multilayer epithelial sheets it 
turned out that delivering single cell as a suspension in a biological 
carrier perform better and are easier to handle [7-12].

On the other side, insights gained from TE experiments have been 
also applied to various forms of medical therapies, such as direct organ 
or tissue replacement. Research on material interactions [13,14] under 
laboratory conditions have also fostered the improvement of medical 
devices. For instance vascular stents have been modified to better 
perform in the human being, which now contributes to an increasing 
number of procedures due to atherosclerosis or Coronary Artery 
Disease. Cells have been seeded onto tubular biopolymer scaffolds to 
generate vascular grafts with the help of smooth muscle cells and an 
inner lining produced by endothelial cells. This is one example where 
huge clinical needs could be met in the future. Others have studied the 
inner lining of synthetic vascular grafts by culturing endothelial cells 
under shear stress conditions, exerted to a closed cell monolayer. This 
is another example for the intermingling of basic science and clinical 
experience in form of a natural transition of TE from bench to bedside 
and back from bedside to bench. 

In larger surrogate structures that are created in the laboratory as a 
tissue substitute we encounter the problem of sufficient initial supply of 
nutrients to the cells that are seeded within a 3-D scaffold. The critical 
time remains until sufficient vascular supply can be created from the 
recipient organism. The mechanistic attempt to combine endothelial 
cell seeding into tissue substitutes in order to achieve earlier vascular in 
growth is still not really feasible since there remains a significant time 
lag until vessels can grow from the outer perimeter of any scaffold into 
the middle of it. Although this idea could be worthwhile in a long term 
perspective, it is not yet clinically successful. This holds also true for 
the addition of various growth factors that may enhance any kind of 
vascularization. However growth factors do not prevent malnutrition 
in the initial phase after transplantation, since the substitute still 
depends on the ingrowths of capillaries from the recipient into the 
middle of any given construct. This is by any means still a process that 
takes at least several days to suffice. 

To circumvent this initial nutritional problem some groups have 
introduced more surgically oriented approaches that encompass the 
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creation of a vascular network first and then allow the transplantation of 
a completely vascularized construct with microsurgical connection of 
arteries and veins. The so called arterio- venous loop model is, however, 
by far more complex and depends on an considerable microsurgical 
expertise [15]. The latter is necessary to guarantee successful vascular 
connections on a supamicrosurgical level [16]. After utilizing this 
technique in small animal models and in a clinically relevant scale in 
large animal models [17] the first clinical results with long term success 
over more than 4 years are now on the horizon and will be reported in 
the near future. 

The advent of new technologies to handle adult mesenchymal or 
embryonic stem cells has raised an increased interest in mesenchymal 
stem cells for TE purposes, their role in stem cell niches and their 
differentiation into various lineages [18]. First identified in the 
bone marrow, where they are present with about ten-fold higher 
concentrations than in the circulation MSC can be obtained from 
nearly all tissues with varying frequencies [19,20]. However in adult 
human beings, the number of viable, freshly isolated cells is limited due 
to the dispensable bone marrow volume [21,22].

According to Tuljapurkar and coauthors [23] although originally 
MSC were used therapeutically for skeletal problems and gene therapy, 
but meanwhile multiple additional therapeutic applications have been 
evaluated. These include the promotion of hematopoietic recovery in 
stem cell transplant recipients severe, acute graft-versus-host disease, 
autoimmune diseases, muscle repair, skin wound healing, intestine 
healing following irradiation, stroke, myocardial ischemia [24,25] as 
well as other diseases [23,26-30]. 

The use of stem cells for tissue engineering and regeneration is 
especially attractive to substitute worn out tissues and to potentially 
regrow parts or whole organs by mechanisms formerly unknown in 
adult mammals. The prospects offered carry significant promise to 
advance our mechanistic understanding of the role of MSC in tissue 
repair and regenerative medicine. Numerous scientists worldwide have 
organized themselves in different societies for Regenerative Medicine 
and are advancing this field in biomedicine. Atala and co authors stated 
that the stem cell field is advancing rapidly and will open new avenues 
for this type of therapy with hitherto unknown possibilities [3,31,32]. 
For example, therapeutic cloning and cellular reprogramming could 
well provide a potentially limitless source of cells for tissue engineering 
applications in the future. While stem cells are still in the research phase, 
some therapies based on tissue engineering concepts have already 
entered the clinical stage successfully. That indicates the promise 
that regenerative medicine will hold for the future [32]. Among the 
issues that need to be further studied are questions of the isolation of 
cell lines, as well as cell line development in order to obtain adequate 
cell lines, tumorigenicity, immunosuppression, surface phenotyping, 
differentiation into specific cell lines (such as adipocytes, chondrocytes, 
and osteoblasts for example). Nevertheless, although numerous 
laboratories around the world are now engaged in the development of 
new tools such as stem cells and biologically active scaffolds it remains 
to be proven if this new technology really has passed the threshold of 
maturity as a clinical method to restore organ function in humans. 
Ethical issues with the use of embryonic stem cells are under discussion 
and not yet clearly answered with regard to clinical translation [33]. 
Despite potential hindrances the stem cell promise has now entered 
the field of TE and therefore the term Regenerative Medicine has been 
propagated as the superordinate concept [5,34,35]. 

Scientists may now take fresh looks at well-known clinical 
problems of replacement of a large variety of organs. From the common 

perspective this will most likely be the regeneration of bone, skin, the 
spinal cord, peripheral nerves, articular cartilage, the conjunctiva, heart 
valves and urologic organs, to name a few aspects only. It will also be 
necessary to work out while still other the mechanistic pathways of 
regeneration and the theoretical implications of growing back organs 
in an adult [32].

But not only severe diseases have become a target for TE research 
efforts. For many reasons it seems attractive to enhance TE further 
towards not life threatening conditions. The demand for cosmetic 
surgery products has been projected alone in the U.S. to reach $3.07 
billion by 2012, while the cosmetic surgery procedures market is 
projected to reach $15.13 billion by 2012 and there is much more 
increase expected in the Asian population [36-38]. Improvements 
in health and the related rise in life expectancy are among the most 
remarkable demographic changes of the past century [39]. For the 
world as a whole, life expectancy more than doubled from around 30 
years in 1900 to 65 years by 2000 (and is projected to rise to 81 by the 
end of this century) [40]. 

With changing age structures, together with improvements in 
health, medical technology, life-style changes, and longevity among the 
elderly, for the first time in history, populations with large and growing 
rates of old age dependency have become a well known phenomenon 
[40]. Simultaneously the number of surgical procedures performed 
worldwide is increasing. Joint and bone replacement procedures (i.e. 
hip, knee and shoulder joints), which were little-known only a century 
ago, have now been implemented as standard treatment options for 
joint diseases or arthrosis worldwide. The need for functional bone 
substitutes is an important issue in this context. Taken alone affections 
of the bony skeletal system, there are approximately more than 1.500.000 
surgical procedures performed every year worldwide in which bone 
substitutes are required. Bone substitutes – which are far away from 
ideal and have many associated problems - are often required to help 
repair or replace damaged or diseased tissues in cases ranging from 
trauma, to congenital and degenerative diseases, to chronic wounds, 
to cancer, to cosmetics. Currently available bone substitutes, including 
autografts, allografts, and synthetic materials, are the most implanted 
materials second only to transfused blood products. Autografting, 
today´s gold standard procedure, is naturally limited, expensive and 
can have significant donor site morbidity, and synthetic materials wear 
out and do not behave like true bone. Seeding biodegradable scaffolds 
with donor cells and/or growth factors, then culturing and implanting 
the scaffolds to induce and direct the growth of new, healthy tissue has 
been attempted by different groups, but the limiting factor up to now 
has been the lack of blood vessels in such 3D-constructs. 

Among the various efforts that have been undertaken to create 
large-scale, it has been shown that tissue engineered bone with a 
prevascularized microvascular pedicle can be formed through a unique 
system of prevascularization of the bony matrix before it is clinically 
implanted [5,15,16,41-45]. This may provide a viable bony substitute 
with blood vessels incorporated as an alternative for the current 
options.

Beside the developments in material science such as constructing 
scaffolds with the help of nano-technique [46,47], also stem cell research 
and genetic engineering will probably lead to hitherto unknown 
progress. Another fascinating prospect for TE related research is the 
advent of the research field of epigenetic, that offers a multitude of 
new perspectives to modulate cells for regenerative purposes [48,49]. 
It has come to light that genes may be mobile, exist in plasmids and 
cytoplasmic organelles, and can be imported by nonsexual means from 
other organisms or as synthetic products. 
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Although the notion of epigenetics was originally given to any 
regulation beyond DNA sequence, it has often been restricted to 
chromatin modifications, supposed to behave as cis-markers, specifying 
the sets of genes to be expressed or repressed. This definition does not 
take into account the initial view of epigenetics, based on nonlinear 
interaction networks whose “attractors” can remain stable without 
need for any chromatin mark [50]. Epigenetics has reborn as a new 
field of developmental genetics.

The unorthodox prion proteins can even simulate some gene 
properties. Genetics was to an extent reincarnated as of the twenty-first 
century by assimilating the tools of cybernetics and of many formerly 
distant areas of science [49]. It refers to changes in phenotype or gene 
expression caused by mechanisms other than changes in the underlying 
DNA sequence, hence phenomena which can be induced during 
cell culture for TE or by interactions between cells and biomaterials. 
Epigenetic changes are preserved when cells divide. These changes may 
remain through cell divisions for the remainder of the cell’s life and 
may also last for multiple generations. Cellular differentiation may 
serve as a typical example of epigenetic changes in eukaryotic cells 
[50]. The molecular basis of epigenetics is certainly complex, since it 
involves modifications of the activation of certain genes, but not the 
basic structure of DNA [49]. In the context of TE and RM, however, it 
can help us to better understand why the differentiated cells in a multi-
cellular organism express only the genes that are necessary for their own 
activity as well as such processes involved in the unfolding development 
of an organism. Specific epigenetic processes include X-chromosome-
inactivation, bookmarking, paramutation, imprinting, gene silencing, 
reprogramming, the progress of carcinogenesis, many effects of 
teratogens, regulation of histone modifications and heterochromatin, 
and technical limitations affecting parthenogenesis and cloning. Given 
the unforeseeable expectations of these developments it becomes clear 
that TE is steadily growing in relevance at the verge of many fields of 
biomedical research and medical science. 

Hope comes also from other areas of research. A recent example is 
the discovery of Popescu and coauthors, who published the detection 
of a specialized type of cells, initially described as interstitial cells of 
Cajal, that are now called telocytes and were described to have been 
detected as a case of serendipity [51-67] (see http://www.telocytes.
com). Understanding the possible action of Telocytes, which were 
found in many organs, such as in the upper and lower urinary tracts, 
blood vessels, pancreas, male and female reproductive tracts, mammary 
gland, placenta, and, recently, in the heart as well as in the gut will 
also further TE and RM prospects. Telocytes have been described as 
a special type of cells in the interstitium that show the presence of 
2-5 cell body prolongations that are extremely thin. Since they were 
measured with a diameter of less than 0.2 mum (and thus under 
resolving power of light microscopy) they had not been detected before 
their specific morpholgy was revealed with the help of labor-intensive 
electron microscopy investigations. The prolongations are extremely 
long and show a monofiliform aspect with many dilations along, as well 
as caveolae [67]. In terms of RM experimental infarction models have 
been implemented to study the ultra structural recovery, especially 
neo-angiogenesis in the infarction border zone with regard to the 
potential role of such Telocytes (TC) [58]. Electron microscopy (EM), 
immunocytochemistry findings and analysis of several proangiogenic 
microRNAs seem to provide evidence for TC involvement in neo-
angiogenesis after myocardial infarction. These findings have been 
discussed to be an indicator for the lead to the speculation that Telocytes 
might play an important role in neo-angiogenesis during the late stage 
of myocardial infarction. The transition of this knowledge into TE and 

RM opens another perspective in solving common problems of tissue 
regeneration.

Conclusion
Although mankind has always been longing for simple and easy 

ways to restore their youth and get rid of degenerative problems 
(Figure 1) there is still a long but promising way to go, unveiling 
the secrets of regeneration to be available for customized problems. 
It seems obvious to utilize all the enormous technical expertise that 
has been gained from the field of TE and RM for more than tissue 
replacement only. Many consolidated findings that stem from TE 
have enhanced the comprehension of molecular and cellular processes 
related to various diseases and physiological processes. Not only may 
such knowledge be applied to different forms of medical treatment, 
such as creating intelligent biological drug delivery systems, but also 
will it be helpful to better understand mechanisms such as apoptosis 
and carcinogenesis [68]. It may help us to explain mechanisms of 
aging, human development, and the origins of cancer, heart disease, 
mental illness, as well as several other conditions. Hopefully it may help 
to successfully treat degenerative and malignant diseases in the future. 
Since like in any emerging scientific field no progress can be made 
without substantial financing a continued support from public funding 
institutions as well as from industry will be necessary to succeed in this.

It remains our challenge and also our ultimate task to continue the 
search for solutions to fight degenerative tissue and organ malfunction 
through the interdisciplinary approach of various disciplines in Tissue 
Engineering and Regenerative Medicine. 
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