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Introduction
Conditional logistic regression, an important extension of the 

logistic regression model, allows for the analysis of data with stratified 
samples [1]. Stratified samples are often encountered in epidemiological 
research. Stratification can occur in the study design (e.g., when the data 
are collected from different sites) or during analysis (e.g., controlling for 
a covariate). A commonly used stratified study design is the matched 
case-control study. Conditional logistic regression is often used to 
investigate the relationship between an outcome and a set of prognostic 
factors in matched case-control studies, as it is designed for the analysis 
of data with small stratum-specific sample sizes. In such a setting the 
outcome of interest is whether a subject is a case or a control [2]. Like 
other regression models, conditional logistic regression models allow 
for multiple variables, continuous exposures, confounding, and effect-
modifying variables to be handled appropriately [3]. 

Although most would agree that assessing model fit is an important 
step in data analysis, it is often skipped when diagnostic tests are not 
readily available or easily implemented. We are not aware of a standard 
statistical package that has the option to calculate diagnostic statistics 
for any matched design. Thus the only option for many analysts is an 
ad-hoc approach that is done by creating a data set containing the 
difference variables and using standard logistic regression diagnostics 
[2]. The approaches currently available in the literature mainly focus 
on diagnostic methods that test for influential pairs and outliers [2,4-
7], and do not have the ability to test the overall model adequacy. 
We are interested in testing whether the functional form of the 
covariates is correctly specified. The lack of existing methods leads us 
to develop a diagnostic test for conditional logistic regression based on 
nonparametric smoothing. 

In this paper we propose a nonparametric diagnostic test for 
matched case-control conditional logistic regression to test the 
functional form of the covariates. We briefly review the conditional 
logistic regression model and existing diagnostic test; a more detailed 
review can be found elsewhere (for example, see [2]). Next, we review 
a method proposed by Hart [8] for nonparametric diagnostic tests in a 
linear model. We extend this methodology to a matched case-control 
conditional logistic regression setting and show the Type I error and 
power of the test statistic via simulations. We illustrate an application 
of this methodology using the Healthy Directions data [9,10]. 

Conditional Logistic Regression Model
Consider a matched case-control study with K matched sets. The 

sets are determined by values of the matching variables, in this case 
there are K distinct possible matching groups. Suppose there are nk 
subjects in stratum k, k =1,2…,K of which n1k are cases and n0k 

are 
controls. The stratum specific logistic regression model has the form 

( )
1

k

kk
e

e

α β

α βπ
′+

′+= ,
+

x

xx

where αk denotes the contribution to the logit of all constant terms 
within the kth stratum. β′ = (β1,β2,…βp) is the vector of coefficients, 
where βq is the change in log-odds for a one unit increase in the 
covariate xq holding all other covariates constant in every stratum [2].

The conditional probability for the kth stratum is obtained as the 
probability of the observed data conditional on the stratum total and 
the number of cases observed: 
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where ck is the number of possible assignments of case status to 
n1k subjects among the nk subjects, and j denotes any one of the ck assignments. For any assignment we let subjects 1 to n1k correspond 
to cases and subjects n1k +1 to nk to the controls. This is indexed by i 
for the observed data and by ij for the jth possible assignment. The full 
conditional likelihood is the product of lk(β)

 
over the K strata [2]. 

When the matching is 1:1, the conditional likelihood for the kth 
stratum is given by 
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Abstract
The use of conditional logistic regression models to analyze matched case-control data has become standard in 

statistical analysis. However, methods to test the fit of these models has primarily focused on influential observations 
and the presence of outliers, while little attention has been given to the functional form of the covariates. In this paper we 
present methods to test the functional form of the covariates in the conditional logistic regression model, these methods 
are based on nonparametric smoothers. We assess the performance of the proposed methods via simulation studies 
and illustrate an example of their use on data from a community based intervention.  
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where x1k is the data vector for the case and x0k 
is the data vector for 

the control. For matched case-control studies with one case per match 
set, this likelihood function reduces to that of the cox model for the 
continuous time scale [11]. 

Conditional logistic regression diagnostics

As with all other statistical models, the common practice of using 
conditional logistic regression models raises questions about model fit 
and the stability of parameter estimates. Pregibon [12] proposes model 
diagnostic methods for logistic regression and more specifically for 
conditional logistic regression [5]. Two of these methods are ANOVA-
like tables and one-degree-of-freedom test for model adequacy. 
ANOVA-like tables use deviance measures broken down into three 
categories, namely total deviance, unexplained deviance, and explained 
deviance, similar in spirit to the way the analysis of variance table breaks 
down the variability in a linear model into explainable (fitted effects) 
and unexplainable (residual) components. These deviance measures 
can be used to develop summary measures such as R2; that is, if the 
explained deviance accounts for a large portion of the total deviance, 
then some of the variables included in the fitted model are important. 
For matched case-control studies R2 measures the strength of the linear 
association between the log odds ratio and exposure variables. Since 
R2 cannot adequately quantify nonlinear associations, and it measures 
the strength but not the adequacy of a linear association, it cannot be 
thought of as a goodness-of-fit statistic; and therefore it should be used 
with caution in this setting [5]. If the data analyst has an idea of the type 
of model variation being experienced then one-degree-of-freedom test 
for model adequacy can be used to test the hypothesis that the model 
is deviant in some way. This is usually done by testing an augmented 
model (including the hypothesized deviant) to the current model. This 
method is not useful if the type of model deviation is unknown or 
the model is deviant in more than one way [5]. A major disadvantage 
of both of these methods is that they are highly influenced by the 
presence of outliers. Outliers can have dramatic effects on model fit 
and parameter estimates even when there are large sample sizes [4,12]. 

Diagnostic tests for detecting the influence of outliers or influential 
pairs on matched case-control analysis as proposed by Pregibon [5], 
Moolgavar et al. [4,6], Bedrick and Hill [7], and Hosmer and Lemeshow 
[2] do not have the ability to test overall model adequacy. Arbogast and 
Lin [13] have developed methodology for assessing the adequacy of the 
functional form of the covariates, the logistic link function, as well as 
the overall model fit for matched case-control data. The methods they 
propose are based on the cumulative residual process. Disadvantages 
of the methods they propose is that they are computationally intensive 
(can be done in minutes with the power of computers available now), 
were implemented in Fortran, and provide yes/no results which does 
not provide any insight about how the model is deviant when the null 
hypothesis is rejected. 

Nonparametric Diagnostic Test for the Linear Model
Hart [8] proposes a method to test the lack of fit in a linear model 

using a linear smoother. Consider the model 

( ) 1i i iY h x i n= + , = ,..., ,

in which 1 n,...,   are zero mean, independent random variables 
with constant variance σ2 < ∞. The principal aim is to learn about the 

relationship between x and Y as it is expressed through the regression 
function h. In a parametric approach to inferring h, one assumes that 

{ ( ) }h S h θ θΘ∈ ≡ ⋅; : ∈Θ ,

where Θ is some subset of p-dimensional Euclidean space [8]. 

The lack-of-fit test is based on smoothing methodology, with an 
interest in testing the null hypothesis that h is in some parametric class 
of functions SΘ against the alternative that h is not in SΘ. The idea behind 
this methodology is that one computes a smooth curve and compares it 
with a curve that is “expected” under the null hypothesis. If the smooth 
curve differs sufficiently from the expected curve, then there is evidence 
that the null hypothesis is false [8]. Smoothing based tests have several 
advantages; they are omnibus in the sense of being consistent against 
each member of a very large class of alternative hypotheses, they tend 
to be more powerful than some of the well-known omnibus tests, and 
they come with a smoother [8]. 

A linear smoother can be used to test the fit of a model, or formally 
the null hypothesis, 

0 { ( ) }H h S h θ θΘ: ∈ = ⋅; : ∈Θ .

When applied to the residuals, a linear smoother at the point x has 
the form: 
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where the weights wi (x; S), i =1,..,n are constants that do not depend on 
the data Y1,…,Yn, or any unknown parameters, S denotes the value of a 
smoothing parameter, and ei are the residuals [8]. 

Suppose that ˆ( )h S⋅;  is a nonparametric estimate of h based on a 
linear smooth of Y1,…,Yn, θ̂  denotes our estimate of θ based on the 
assumption that the null model is true, and ˆ ( )g x S;  is defined in 
equation 1. It can be shown [8] that, 

ˆ ˆˆ ˆˆ( ) ( ) ( ) Bias{ ( ) }θ θ; − ; = ; + ; , ,h x S h x g x S h x S 	                                      (2)

where Bias ˆ ˆ{ ( ) }h x S θ; ,  denotes the bias of ˆ( )h x S;  when the null is true 
and θ is the true parameter value. 

If the null hypothesis is true, the residuals should behave like zero 
mean, uncorrelated random variables. Therefore, the linear smoother 
in equation (1) should be relatively flat and centered around zero. A 
subjective diagnostic is to plot the estimate ˆ ( )g S⋅;  and see how much 
it differs from the zero function. Often a pattern will emerge in the 
smooth that was not evident in a plot of the residuals. However, looks 
can be deceiving so it is important to have a statistic that objectively 
measures the difference between ˆ ( )g S⋅;  and zero. Hart [8] proposes 
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where the numerator measures the “size” of the function g and 2σ̂  is a 
model free estimator of the variance σ2. It can be shown [8] that 
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Extension of Nonparametric Diagnostic test to 
Conditional Logistic Models

Consider the model 

z (µ (x)) = f (xi) + ηi, i = 1,…,n 
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where µ(x) = E(Y | x) , ( )z ⋅  is the logit function, and xi, i = 1,…n 
are fixed design points. We assume that 1 nη η, ..., are independent 
random variables with E(ηi) = 0 and Var(ηi) = σ2 < ∞. As in the case of 
simple regression, the principal aim is to learn about the relationship 
between x and Y as it is expressed through the regression function f. In 
a parametric approach to inferring f, one assumes that 

{ ( ) }f S f θ θΘ∈ ≡ ⋅; : ∈Θ ,

where Θ is some subset of p-dimensional Euclidean space [8]. 

We will use a linear smoother, one that is linear in the residuals, to 
test the fit of our model; in this case the null hypothesis is 

H0 : f (x) = x′β.

Our linear smoother will be similar to that of equation (1), however 
x is now a vector of length n , the total number of observation in strata 
i, instead of a scalar. The smoother will have the form 

1

ˆ ( ) ( )ˆ
n

i
m S S

=

; = ; ,∑ iix w x r

where the weights wi(x; S) i =1,…,n, are constant vectors for the ith strata 
that do not depend on the data Y1,…,Yn, or any unknown parameters, 
S denotes the value of a smoothing parameter and ri is the vector of 
residuals for the ith strata. 

Formulation of the test statistic for 1:1 matched case-
control study

Since each strata has two observations, let xi = [xi,1 xi,2]′ and

[ ]1 2ˆ ˆ ˆi ir r, ,=ir ′. For any vector x = [x1 x2] our smoother will have the 

form 
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Where wi(x; S) is a vector valued function defined by wi(x;S)′ = 
[wi(x1) wi(x2)], and wi,j = wi(xj). Thus our smoother is basically a 
weighted sum of the residuals. We use a Nadaraya-Watson type kernel 
smoother to define the weights 
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Our lack-of-fit test statistic will have the form 
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Using the central limit theorem of quadratic forms, as proposed by 
De Jong [14], it can be shown that 

( ) (0 1)
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when the difference between R and W(n) is negligible asymptotically, 

where W(n) = ∑1≤i≤n∑1≤j≤n aijXiXj . Since the var(R) is not a trivial 
calculation, we use bootstrapping to approximate the distribution of 
our test statistic. Using arguments from Hall and Hart [15], Hart [8] 
suggests that under certain conditions the bootstrap approach can yield 
a better approximation to the sampling distribution of a test statistic 
than the normal distribution. 

Choice of smoothing parameter

The smoother in equation 3 and test statistic in equation 4 are 
dependent on a smoothing parameter, S. Choosing the appropriate 
value of the smoothing parameter is imperative as different values 
of S correspond to different tests of the null hypothesis. Ideally one 
would want to choose a value that maximizes power. However, often 
times the most powerful parameter will depend on some unknown 
function [16]. There are different types of techniques that can be 
used to determine the appropriate value of the smoothing parameter, 
“by-eye”, data driven, and reasonable idea (i.e., the experimenter has 
a reasonable idea of the type of alternative to expect and chooses a 
smoothing parameter that is optimal over that class of alternatives). 
There have been some suggestions [8,16] about the use of data driven 
methods such as cross validation in choosing the appropriate value. 
King et al. [16] suggest that there are some drawbacks to these methods 
as they were not designed to maximize the power of a test and they 
add randomness to the test, effecting the distributional theory. Hart [8] 
suggest that the technique used to identify the appropriate value of the 
smoothing parameter should depend on the data analyst’s reasons for 
fitting a nonparametric smooth curve. 

When one is unsure about the appropriate value of the smoothing 
parameter the significance trace approach plots the p-values for a range 
of smoothing parameters [17]. This allows for the assessment of the 
effect of choice of smoothing parameter on the results of the test. When 
the resulting p-values are all above or below α the result of the test is 
clear as conclusions made are independent of the smoothing parameter. 
Azzalini and Bowman [17] suggest a range of values for which the 
smoothing parameter should be examined and provide suggestions on 
how to handle cases where an interpretation of the significance trace 
is not completely conclusive since it fluctuates around the significance 
level. 

A Simulation Study
We conducted a simulation study to investigate the Type I 

error rate and power of our proposed test statistic in a 1:1 matched 
conditional logistic regression model. These studies were conducted as 
follows. We simulated data from a matched case control conditional 
logistic regression model of the form: 

logit(Yij |Yi1+Yi2 =1) = βxij, 

i = 1,..,n j = 1,2 where xij 
is a uniform random variable and β = 3.5. For 

each sample size considered n = 25, 50, and 100, where n the number 
of matched sets, 500 independent sets of data is were generated. For a 
given set of data, the test statistic R (equation 4) was calculated. 5,000 
bootstrap samples of size n were generated from each of the 500 data 
sets by drawing with replacement from the residuals r1,…,rn. Bootstrap 
test of the nominal level α = 0.05 were conducted for various values of 
the smoothing parameter. 

The Type I error rate seems to improve with increases in sample 
size, and seems to be affected by the value of the smoothing parameter, 
however, for certain values of the smoothing parameter the Type I error 
rates are consistently on target. In Table 1 we can see that regardless of 
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sample size, with a smoothing parameter of 0.2 (what we consider a 
medium size parameter), we simulate a type I error equivalent to the 
level of the test. 

When the sample size is low (i.e. 25 pairs) the type I error fluctuates 
a bit as the smoothing parameter changes. This is most likely a sample 
size issue with the application of the central limit theorem. However, 
with a larger sample size (i.e. 50 or 100 pairs), the CLT works well and 
the validity of the test does not depend on the value of the smoothing 
parameter under the null hypothesis. Hence, our type I error is well 
controlled at 0.05 for various choices of smoothing parameters in 
larger samples. 

We tested the power of our test statistic against two common 
alternatives. First we tested the power of our test statistic against a 
quadratic alternative, where the null model is missing the quadratic 
term. Power simulations were conducted in a similar manner as the 
Type I error simulations. The null and alternative models for the 
quadratic alternative are specified as follows: 

H0 : logit(Yij |Yi1+Yi2 =1) = β1xij

2
1 1 2 1 2( 1)ij i i ij ijH logit Y Y Y x xβ β: | + = = + ,

where β1 = 3.5 and β2 = 2.5. Since the null model is nested in the 
alternative we also calculated the power of the Likelihood Ratio Test 
(LRT). The power studies for the LRT were conducted as follows. For 
each sample size, n = 25, 50, and 100, we simulated 5,000 independent 
data sets under the alternative model and fit conditional logistic 
regression models under both the null and alternative hypotheses and 
computed a likelihood ratio test statistic for each data set. 

Table 2 presents the simulation results; we see that the power of our 

test statistic increases with increases in sample size. Samples as small 
as 50 have very good power against this alternative. Since the power 
of the LRT is independent of the value of the smoothing parameter 
we compare the power of the LRT for a given sample size to the power 
of our test statistic at various values of the smoothing parameter for 
that sample size. Against the missing quadratic alternative the LRT has 
more power than our test statistic, but our test statistic performs fairly 
well compared to the LRT which is most powerful in this setting. 

Next we tested the power of our test statistic against the log 
alternative, where the null model is linear in the covariates and the 
alternative model is log linear in the covariates. The null and alternative 
models are specified as follows: 

H0 : logit(Yij | Yi1+Yi2 =1) = β1xij, 

H1 : logit(Yij | Yi1+Yi2 =1) = β1 log (xij), 

where β1 = 3.5. Here we are assessing the power of the likelihood ratio 
test against model misspecification. To calculate power of the LRT we 
generated data under the alternative that the covariates are log linear 
(HA) and calculated the likelihood ratio test statistic as if the alternative 
model was the linear model (H1) against the null model (H0): 

HA : logit(Yij | Yi1+Yi2 =1) = β1log(xij), 

H0 : logit(Yij | Yi1+Yi2 =1) = β1 

H1: logit(Yij | Yi1+Yi2 =1) = β1xij 
The results of the simulation are presented in Table 3, the power 

of our test statistic improves with increases in the number of matched 
sets. Samples sizes as small as 25 have power between 70 and 80 percent, 
and sample sizes greater than 50 have power of over 89 percent. The 
LRT does not perform well against model misspecification especially 
for small sample sizes and our test statistic has more power in all cases. 

In summary, we can see from simulation that there is some 
sensitivity of the results to the choice in smoothing parameter. For 
small sample sizes (n=25) our test statistic did reasonably well in the 
Type I error and power analysis. For samples of size 50 or larger our 
test statistic appears to have good properties, irrespective of the value 
of the smoothing parameter. 

Application to the Healthy Directions Data: An Example
We illustrate the proposed methods by applying them to the data 

from the Harvard Cancer Prevention Program Project (HCPPP) 
Healthy Directions, which is composed of two randomized controlled 
trials, one in health centers (HC)[10], and another in small businesses 
(SB) [9]. The overarching goal of the HCPPP was to create a new 
generation of cancer prevention interventions that would be effective 
among working class, multi-ethnic populations. The study aims and 
sampling strategies are published in greater detail elsewhere [9,10]. 

The primary goals of the intervention were to have participants 
modify their behavioral risk factors for Cancer, namely increase fruit 
and vegetable intake, decrease red meat consumption, increase physical 
activity levels, and increase multivitamin intake. The investigators were 
interested in a summary measure to determine how well an individual 
did on the intervention as a whole. We developed a multiple risk factor 
summary score based on the assumption that the summary measure 
would be a linear combination of the four behavioral risk factors. We 
used a conditional logistic regression model and analyzed the data as if 
it came from a matched case-control study, where each individual is a 

#of Matched Sets Smoothing Parameter Type I Error

25 0.02 0.068  

0.2 0.050  

2.0 0.064  

50 0.02 0.058 

0.2 0.050 

2.0 0.048 

100 0.02 0.052 

0.2 0.050 

2.0 0.054 

Table 1: Empirical Level of Test Statistic in Bootstrap Simulation Study.

# of Matched Sets Power of LRT Smoothing Parameter Power

25 0.847 0.2 0.70  

0.8 0.77  

2.0 0.79  

50 0.985 0.2 0.94  

0.8 0.96 

2.0 0.97 

100 0.996 0.2 0.98 

0.8 0.99 

2.0 0.99 

Table 2: Power of Test Statistic against Quadratic Alternative.
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control, pre-intervention, and a case, post-intervention. The outcome 
of the conditional logistic regression model is a subjects’ intervention 
status (pre or post-intervention). The coefficients for the score are the 
parameter estimates from the conditional logistic regression model. 
The development of the multiple risk factor summary measure can be 
found in greater detail elsewhere [18]. 

After developing our summary score we wanted to formally test the 
assumption that the relationship between the individual continuous 
risk factors and the logit of the intervention status is linear. To do so 
we used a linear smoother (equation 3) and test statistic (equation 4). 
The outcome Y is an indicator of intervention time, pre-intervention or 
post-intervention, x is the number of fruits and vegetables consumed 
per week by the study participant. Approximations of the P-values 
were estimated using bootstrap, and determined by values of our test 
statistic from bootstrap samples that were more extreme than the value 
of our test statistic from our observed sample. Five hundred bootstrap 
samples were generated each with a sample size equivalent to that 
of the Healthy Directions data (n=1,209). Since we are unsure as the 
appropriate value of the smoothing parameter we used the significance 
trace method, where one computes P-values at several different values 
of the smoothing parameter. The question as to the most appropriate 
value of the smoothing parameter is irrelevant if all the P-values are 

greater than or less than the level of significance of the test. In these two 
cases the resulting conclusion drawn on the hypothesis is independent 
of the smoothing parameter. 

Figure 1 shows the significance trace from the Healthy Directions 
data. The test statistic, R (equation 4), was computed at 15 different 
values of the smoothing parameter S, for each bootstrap sample. With 
a significance level of 0.05, we can see that we would fail to reject the 
null hypothesis regardless of the value of the smoothing parameter. 
Therefore, we can conclude that the relationship between x and Y in 
our nonparametric smooth function is not significantly different than 
that in our conditional logistic regression model. There is no evidence 
that our assumption of linear relationship between fruit and vegetable 
intake and the logit of intervention status has been violated. 

Discussion
The use of a nonparametric smoother to test the linearity assumption 

was adopted from the methods proposed by Hart [8] and expanded to 
fit our conditional logistic regression model by extending the current 
methodology from one dimension to higher dimensions. The use of 
nonparametric smoothing methodology has several advantages. One 
of the most attractive advantages is that the test comes with a smoother 
[8]. Other methods provide a yes or no decision but do not provide any 
insight about the underlying function. The bias free nature of smoothed 
residuals is another advantage of our methodology. If one were to plot 
the left hand side of equation 2, ˆˆ( ) ( )r x S r x θ; − ; versus x, a systematic 
pattern would not be unusual even if the null hypothesis were true, 
due to the bias in the smoother ˆ( )r S⋅; . However, a pattern in the 
graph of the smoothed residuals is not expected unless the regression 
function actually differs from the null model [8]. From equation 2 we 
can see that when the bias is negligible, the residual smoother, ˆ ( )g x S;  
is equal to a smooth of the data, ˆ( )r x S;  minus the truth under the 
null hypothesis, ˆ( )r x θ; . The unbiased nature of the residual smoother 
makes it a good tool to determine whether or not the null hypothesis 
should be rejected. Although often bias, the smooth of the data is a 
good tool to provide insight into the data when the null hypothesis is 
rejected. It can be used to determine how the model is deviant from the 
null hypothesis. 

We bootstrapped the residuals in the simulations because this 
approach approximates the distribution of our test statistic relatively 
well [8]. This also allowed us to save computation time, cutting the 
computation time by almost half. However, the fact that our proposed 
methodology is still computationally intensive is a major limitation. 
For a data set containing 50 matched sets it takes approximately two 
minutes to produce a p-value based on 500 bootstrap samples. Despite 
the computation time, we have developed an R program that is simple to 
use. The user needs only to input the value of the smoothing parameter, 
the number of bootstrap samples desired, and the data in the specified 
format. The program returns the value of the test statistic for the original 
sample, the value of the test statistic for each of the bootstrap samples, 
and a p-value based on this information. It also produces a plot of the 
density of the bootstrapped test statistics indicating the value of the test 
statistic from the observed data and the p-value. 

There still remains a question about the appropriate choice of 
smoothing parameter. To obtain a test with a prescribed level of 
significance, the smoothing parameter should be fixed before the data 
are examined, by bootstrapping one can ensure approximate validity 
of any test based on a single smoothing parameter [8]. Therefore, one 
should use the smoothing parameter that corresponds to the highest 

# of Matched Sets Power of LRT Smoothing Parameter Power

25 0.34 0.2 0.70  

0.8 0.73  

2.0 0.76  

50 0.61 0.2 0.89 

0.8 0.95 

2.0 0.95 

100 0.88 0.2 0.99 

0.8 0.99 

2.0 0.99 

Table 3: Power of Test Statistic against Log Alternative.
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Figure 1: Significance Trace for the Healthy Directions Data.
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level of power. However, if one does not have much knowledge about 
the true distribution of the data this information is unavailable. 
Using the significance trace method provides a partial solution to this 
problem but for cases where the significance trace is not definitive, the 
question of choosing the appropriate smoothing parameter remains 
unanswered, and is an area for future research. 

Although most would agree that checking model adequacy is an 
important part of any statistical analysis, this step is often left out when 
appropriate methods and easily implemented software are not available 
to do so. Our proposed methodology and user friendly R routine 
provide data analyst the ability to perform nonparametric diagnostic 
test for the conditional logistic regression model. 
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