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Introduction
The number needed to treat (NNT) has been used increasingly 

often by clinical researchers interested in expressing the consequences 
of different treatment strategies. Laupacis et al. [1] pointed out 
limitations in making use solely of relative measures of treatment 
effect such as relative risks, relative risk reductions and odds ratios, 
primarily because they do not reflect the control event rate and 
hence the practical consequences of using an effective treatment in 
clinical terms. The absolute risk difference conveys the difference in 
risk of events under two treatment strategies (use of the experimental 
treatment or use of the control). Inversion of the risk difference gives 
an estimate of the number of patients that would be required to treat 
with the experimental treatment rather than the control before one 
could expect, on average, to be fewer events in the scenario in which 
patients were treated with the experimental treatment. 

The number needed to treat has been criticized by several authors 
[2], but nevertheless, there is a strong apparent interest in reporting 
NNT-like measures for the analysis of recurrent event data [3] and 
attempts to do this have caused much discussion [4]. We consider the 
associated issues and propose approaches that can be adopted to meet 
these objectives.

The remainder of this paper is organized as follows. In section 2 
we define some notation and functions pertaining to recurrent event 
processes and discuss concepts relevant to the formulation of NNT-
like measures for recurrent events. In section 3, we discuss issues in 
constructing NNT-like measures in settings with recurrent events. An 
application is given for illustrative purposes involving data from a trial 
of patients with cystic fibrosis. Extensions to deal with recurrent events 
with a terminal event such as death are discussed in section 4. Some 
general remarks are made in section 5.

Some Functions for Modelling Recurrent Event Data
Consider a randomized clinical trial in which individuals are to be 

followed over time in order to record the occurrence of clinical events 
of interest. Follow-up may be planned over (0, ]C  and we let †

iC  
denote a random time representing when individual i is lost to follow-up; 
we therefore observe individual i over (0, ]iC  where,  †min( , )i iC C C= . Let t=0 

denote a common time origin taken to be the time of randomization. 
Let 1 20 i iT T< < <  denote the times of events occurring for individual 
i, i=1, ... , m. If ik iT C≤  then the kth event is observed and we let 

min( , )ik ik iX T C=  and ( )ik ik ikI X Tδ = =  be the censoring indicator. It is also 
helpful to define ( ) ( ),ik ikY s I s T= ≤  ( ) ( ),i iY s I s C= ≤  ( ) ( ) ( ),ik i ikY s Y s Y s=  
and  ( ) ( ).ik ikdN s I T s= =

Let ( ) ( )ik kP T t F t≤ =   denote the cumulative marginal distribution 
function for the time to the kth event and let 

0

( | )( ) lim ,ik ik
k t

P t T t t t Th t
t∆ →

≤ < + ∆ ≤
=

∆
denote the corresponding hazard function; note ( ) exp( ( ))k kF t H t= −  

where 
0

( ) ( ) .
t

k kH t h s ds= ∫  The Kaplan-Meier estimate of ( )kF t  is the 
nonparametric maximum likelihood estimate given by

(0, ]

ˆ ˆ( ) (1 ( ))k k
t

F t dH s= −∏

Where,  . .
ˆ ( ) ( ) / ( )k k kdH s dN s Y s= where  . 1

( ) ( ) ( )m
k ik iki

dN s Y s dN s
=

=∑  

and . 1
( ) ( )m

k iki
Y s Y s

=
=∑  [5,6].

The random variable  
1

( ) ( )i ijj
N t I T t∞

=
= ≤∑  is a count of the number 

of events occurring over (0, ]t  for individual i, where ( )I ⋅  is an 
indicator function such that I(A)=1 if A is true and I(A)=0 otherwise. 
When viewed as a stochastic process over time, { ( ),0 }iN s s≤  is a 
right-continuous counting process. Let ( ) ( ) ( )i i iN t N t t N t− −∆ = + ∆ −  
denote the number of events occurring over [ , )t t t+ ∆  for individual 
i and  

0
( ) lim ( )i it

dN t N t
∆ ↓

= ∆ indicate whether an event occurred at t for 
individual i. Figure 1 contains a schematic indicating the relationship 
between the event times, censoring time and counts.
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Abstract
Many clinical investigators find the Number Needed to Treat (NNT) an appealing measure of treatment effect and 

use it routinely in reporting the results of randomized trials. It is most easily computed and interpreted for trials with 
binary responses, but attempts have been made to compute NNT-like measures for recurrent event outcomes. We 
discuss methodological issues concerning the construction of NNT-like measures of treatment effect based on recurrent 
event outcomes. Rate and mean functions are used to develop nonparametric estimates of NNT-like measures of 
treatment effect for recurrent events in terms of the number of individuals to be treated to expect to prevent a kth event, 
and simply to prevent any event. Parametric analyses facilitate the derivation of alternative measures and associated 
estimates. Applications to a trial of patients with cystic fibrosis are given for illustration. In settings where mortality rates 
are non-negligible, joint NNT-like measures for the recurrent event and survival processes are required and these are 
discussed.
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Let ( ) { ( ),0 }i iH t N s s t= < <  denote the history of the process for 
individual i at time t, which captures the number and times of events 
from 0 to t− . The intensity function of the recurrent event process is 
the instantaneous conditional probability of an event occurring at t 
given the history, and is written as

0

( ( ) 1| ( ))( | ( )) lim i i
i t

P N t H tt H t
t

λ
∆ →

∆ =
=

∆
    

If two events cannot occur at the same time, then this intensity 
completely specifies the event process.

We let ( ) ( ) ( )i i idN t Y t dN t=   to indicate that an event was observed 
at time t for individual i. Under the assumption of conditionally 
independent and non-informative censoring [7], the conditional 
probability that “ in  events occur at times 1 ”

ii int t< <  over (0, ]iC  
for individual i, i=1,...,m, is

1 1 0

( | ( )).exp{ ( ) ( | ( )) } .
inm

ij i ij i i
i j

t H t Y u u H u duλ λ
∞

= =

 
 
 

∏ ∏ ∫
  

  

While intensity-based models are useful when interest lies in 
understanding the dynamic aspects of a point process, marginal 
features such as mean or rate functions are more appealing when 
analysing data with a view to treatment comparisons in clinical trials. 
The mean function for example, defined by ( ) { ( )},it E N tµ =   gives the 
expected number of events observed over (0, ]t  per individual. The 
rate function ( ) ( ) /t d t dtρ µ=  is the derivative of this mean function 
and so reflects how the rate of events changes over time; we often 
write ( ) ( ) { ( )}it dt d t E dN tρ µ= = informally and as a consequence 

express the mean function as 
0

( ) ( ) .
t

t s dsµ ρ= ∫  For Poisson processes, 

the intensity function is a rate function and so analyses based on rate 
functions can be likelihood-based under Poisson assumptions. In this 
case the log-likelihood becomes

0
1 1

log ( ) ( ) ( ) .
inm

ij i
i j

t Y u u duρ ρ
∞

= =

 
− 

 
∑ ∑ ∫                      (1)

If parametric modelling is of interest, then the rate function may be 
indexed by a 1p×  parameter vector θ  and written as  ( ; ).tρ θ  In this 
case we obtain a score vector from equation 1 as  

1
( ) ( ),

m

i
i

U Uθ θ
=

=∑  where

0

log ( ; )( ) ( ) { ( ) ( ; ) }.i i i
sU Y s dN s s dsρ θθ ρ θ

θ

∞ ∂
= −

∂∫   
  

If  θ̂  is the solution to  ( ) 0U θ = , then

1 1ˆ( ) (0, ( ) ( ) ( ))pm MVN A B Aθ θ θ θ θ− −−                 (2)

where ( ) { ( ) / }iA E Uθ θ θ ′= −∂ ∂  and ( ) { ( ) ( )}.i iB E U Uθ θ θ′=  If the recurrent 
event process is a Poisson process then ( ) ( )A Bθ θ= , but equation 2 is 
a general result which holds for mixed Poisson processes, for example.

Nonparametric estimation of rate and mean functions is carried 
out by thinking of ( ) ( )d s s dsµ ρ=  as a quantity of interest and 
considering the estimating equation for ( )d sµ   as

1
( ) ( ){ ( ) ( )} 0

m

i i
i

U s Y s dN s d sµ
=

= − =∑  0 ,s≤     
  

The solution to ( ) 0U s =  is simply ˆ ( ) .( ) / .( )d s dN s Y sµ =  where 

1
.( ) ( ) ( )m

i ii
dN s Y s dN s

=
=∑  is the total number of event observed at 

time s and 
1

.( ) ( )m
ii

Y s Y s
=

=∑  is the total number of individuals under 
observation at time s. The nonparametric estimate of the mean function 
is then

0
ˆ ˆ( ) ( ),

t
t d sµ µ= ∫                      (3)

and is called the Nelsen-Aalen estimate [8]. A robust variance for   
ˆ( ( ) ( ))m t tµ µ− derived by Lawless and Nadeau [9] is

0 0
1

( ) ( )ˆvar{ ( ( ) ( ))} cov{ ( ), ( )},
.( ) .( )

m t t i i
i i

i

Y u Y vm t t m dN u dN v
Y u Y v

µ µ
=

− = ⋅∑∫ ∫
   

  

and they recommend its use to provide protection against extra-
Poisson variation. The sample estimate



2

0
1

( ) .( )ˆvar{ ( ( ) ( ))} ( ) ,
.( ) .( )

m t i
i

i

Y u dN um t t m dN u
Y u Y u

µ µ
=

  
− = −  

  
∑ ∫                (4)

can be used to construct confidence intervals or conduct tests of 
hypotheses.

NNT for Recurrent Event Analyses
NNT for the kth Event

The rationale for using the number needed to treat as a measure of 
treatment effect is to place the consequences of using the experimental 
treatment over the control in a context with which clinicians can relate. 
It is easy to understand that using one treatment strategy over another 
will lead to a different expectation in terms of the number of events, 
but in the traditional context of binary responses one can equivalently 
think of the expected difference in the number of patients that will be 
affected since each individual may or may not experience an event.

We consider a simple controlled trial in which patients are 
randomized to receive either a control therapy or an experimental 
treatment with equation l probability. Despite the complex nature of 
data in trials involving recurrent events, it is common to base treatment 
comparisons simply on the probability of being “event-free”. When 
all individuals are followed for the same duration of time this can be 
done simply based on a binary response indicating that an event did or 
did not occur over the common time period. With variable follow-up 
however, the use of binary responses is not appropriate and methods 
which accommodate censoring are required.

Altman and Andersen [10] describe how to compute the number 
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Figure 1: Realization of a counting process and associated notation.
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needed to treat based on a time to event outcome. Here we generalize 
this notion to deal with the times to the occurrences of a series of events 
in the spirit of the marginal graphical approach of Pepe and Cai [11]. 
Specifically, the number needed to treat to prevent the kth event is a 
function of time and is given by  1

0 1( ) [ ( ) ( )]k k kt F t F tη −= −  where ( )jkF t  
is the cumulative distribution function for the kth event in group j, 
j=0,1. Then the number needed to treat to prevent the kth event is then 
estimated as

0 1

1ˆ ( ) ,ˆ ˆ( ) ( )k
k k

t
F t F t

η =
−                    (5)

Where, ˆ ( )jkF t  is the Kaplan-Meier estimate of ( )jkF t . In practise, 
investigators should specify a small number of time points at which 
this statistic should be computed. Confidence intervals for this number 
needed to treat can be obtained from Greenwood’s formula [6].

NNT for recurrent events-nonparametric analyses

In the context of recurrent event outcomes, one can chose to 
summarize the consequences of using one treatment over another in 
terms of the number of patients affected as discussed in the previous 
section. Alternatively, if events are of primary interest, one may view it 
as important to reduce the occurrence of events irrespective of whether 
they are affecting a new individual or are a secondary event in an 
individual who already experienced an event. The latter setting is often 
of interest in health economic analyses where events incur costs and it 
is desirable to reduce their numbers.

With a sample of size m, the expected number of events in the 
entire sample that will be experienced over (0, ]t  is ( )m tµ . Therefore, 
if we consider a distinct sample of m patients, the difference in the 
expected number of events for patients given the treatment versus the 
control would be  0 1[ ( ) ( )]m t tµ µ− , where ( )j tµ  is the mean function 
for individuals in group j,  j=0,1. Setting this equation l to one and 
solving for m gives the number needed to treat to prevent one recurrent 
event by time t, under treatment versus control conditions, and we 
write this as 1

0 1( ) [ ( ) ( )]v t t tµ µ −= − . The nonparametric estimate of 
this is obtained by replacing the mean functions by the Nelson-Aalen 
estimates giving

0 1

1ˆ( )
ˆ ˆ( ) ( )

v t
t tµ µ

=
−

                        (6)

Note that when treatment effects are strong or the expected number 
of events in the control arm is large,  ˆ( )v t  may be less than one, implying 
that even if one patient were treated with the experimental treatment 
rather than the control with sufficient follow-up one would expect to 
prevent one event. Although this may at first seem odd compared to the 
usual NNT analysis, it simply indicates that treatment is performing 
substantially better than the control at time t in that the difference in 
the expected number of events is greater than one. Again, it is sensible 
to have some particular time points in mind to assess the ˆ( )v t . The 
robust variance estimates of Lawless and Nadeau [9] should be used 
when constructing confidence intervals for 0 1( ) ( )t tµ µ−  which can be 
inverted to give confidence intervals for ˆ( )v t .

NNT for recurrent events-parametric analyses

Analyses of recurrent events are frequently based on a time 
homogeneous Poisson model in epidemiology and clinical trials. In 
this case the rate function is constant so ( )tρ ρ=   and the maximum 
likelihood estimate of ρ   is 1 1

( ) / .m m
i i ii i

N C Cρ
= =

=∑ ∑   This is often called 

the “events-per-person-years” analysis because this estimated rate is 
simply the total number of events divided by the total (person-years) of 
observation in the sample. It is a widely used statistic in epidemiology 
where it plays a central role in tabulating disease incidence rates and 
computing standardized mortality ratios. Under this model, since the 
rate is constant over time, { ( )} ,E N t tρ=   and the parametric analogue 
to (Equation 6) is

0 1

1( )
( )

pv t
tρ ρ

=
−

                    (7)

Where, 0ρ  and 1ρ  denote the event rates in the control and 
experimental arms respectively and the tilde denotes the corresponding 
estimate.

Note that if ( ; )sρ θ ρ θ= =   then

1 1

0
( ) ( ) { ( ) } { ( ) }i i i i i iU Y s dN s ds N C Cθ θ θ θ θ

∞ − −= − = −∫
 

  

and so  2( ) / ( ).i i iU N Cθ θ θ −−∂ ∂ =  Therefore ( ) { ( ) / }iA E Uθ θ θ= −∂ ∂  is 
estimated by

2

ˆ1

1ˆ ˆ ˆ( ) ( ) / /
m

i i
i

A N C C
m θ θ

θ θ θ
= =

= =∑      

Where, 
1

/m
ii

C C m
=

=∑   and ( ) { ( ) ( )}i iB E U Uθ θ θ′=  is estimated 
by

2 2

ˆ1

1ˆˆ( ) { ( ) }
m

i i i
i

B N C C
m θ θ

θ θ θ−

= =

= −∑  

So



1 1
2 2 2

2
1 1 1

1 1 1 1ˆ ˆ ˆ ˆar{ ( )} ( ) / ( ( ) / ) ( ) /ˆ
m m m

i i i i i i i
i i i

asv m N C N C C N C
m m m

θ θ θ θ θ
θ

− −

= = =

     − =           
∑ ∑ ∑  

     
2 2

1

ˆ( ( ) ) / .
m

i i i
i

m N C C Cθ
=

= −∑

It may also be of interest to estimate how long one would have 
to treat one patient in order to expect to see one less event under the 
experimental treatment compared to the control therapy. Therefore 
one could set 0 1( ) 1tρ ρ− =  and solve for t to get the “time-needed-to-
treat” (τ ) as 1

0 1[ ]τ ρ ρ −= −   which we can estimate by 

0 1

1τ
ρ ρ

=
− `                                                                            (8)

and this would give us an estimate of the time needed to treat one 
patient, on average, in order to prevent one adverse recurrent event. 
Again, if the difference between 0ρ  and 1ρ  is large enough, then this 
may be less than one unit of time.

Illustration with application to a cystic fibrosis trial

Here we consider data from a trial of cystic fibrosis patients in which 
children were randomized to receive a purified recombinant form of 
the human enzyme DNase I, called rhDNase, or placebo [12,13]. There 
were 324 and 321 individuals randomized to the placebo and rhDNase 
arms, respectively. Those randomized to the experimental treatment 
received it daily and the remaining patients were administered a placebo; 
patients and their physicians did not know which treatment (rhDNase 
or placebo) they were receiving. Follow-up was for approximately 169 
days, and the occurrences of exacerbations over the study period were 
recorded for each individual. Individuals experienced as many as five 
exacerbations.
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Figure 2 gives the Kaplan-Meier estimates of the proportion of 
individuals with at least one exacerbation (left panel) and at least two 
exacerbations (right panel) as a function of time since randomization. It 
can be seen that while an estimated 43% of placebo treated individuals 
have at least one exacerbation by 180 days, only approximately 13% 
of individuals on placebo treatment experience a second exacerbation. 
Moreover, the rhDNase treatment does not have a strong effect in 
delaying the second exacerbation. The plot of the nonparametric 
estimate of the number needed to treat to prevent the first event is in 
figure 3 from which it can be seen that very few individuals must be 
treated with rhDNase to expect to save an individual from experiencing 
their first exacerbation ˆ( (180) 10.5;95%CI:10.2,10.8).η =  To expect to 
prevent one second event, the estimate is that 2ˆ (180) 111.9η =   individuals 
must be treated with rhDNase rather than placebo (95%CI:99.9,127.2).   

A central objective of the study was to compare the two treatment 
groups in terms of exacerbation occurrence. Figure 4A (left panel) 
contains plots of the Nelson-Aalen estimates of the mean number of 
exacerbations by treatment group. Figure 4B (right panel) contains the 
number needed to treat estimates over time corresponding to (Equation 
6). We find ˆ(180) 6.8210(95%CI:6.4197,7.2758).v =  The parametric 

analysis yielded estimates 0 0.0038ρ =  and 1ˆ 0.0029ρ =   for the placebo 
and rhDNase treated patients respectively yielding an estimate of  
ˆ (180) 6.0183pv =  from (Equation 7);  95%CI:3.1938,52.0483 , which 

is in close agreement with the nonparametric estimate.

NNT for Recurrent and Terminal Events
NNT and competing risks

Before discussing issues pertaining to recurrent and terminal 
events, we first consider the simpler problem associated with a three-
state model suitable when individuals are at risk of a non-fatal event 
and death. Here state 0 may represent being “alive and event-free”, state 
1 may represent being alive with event, and state 2 represents death. If 

( )iZ s  denotes the state occupied by individual i at time s, we let

0

( (( ) ) | ( ) 0)( ) lim i i
k t

P Z t t k Z tq t
t

− −

∆ →

+ ∆ = =
=

∆
                   (9)

denote the transition intensity for 0 k→  transitions, k=1, 2. The 
cumulative transition intensity is denoted 

0
( ) ( )

t

k kQ t q s ds= ∫   and we 

sometimes write  ( ) ( )k kdQ t q t dt= . The probability of a 0 k→  transition 

occurring at time s and is given by 1 2( ) exp( [ ( ) ( )]).kdQ s Q s Q s− +  The 
probability of this event happening at any time over the interval (0, ]t   
is obtained from the cumulative incidence function

1 20
( ) ( ) exp( [ ( ) ( )])

td
k kF t dQ s Q s Q s= − +∫                    (10)

Where, the superscript d indicates that this is a cumulative sub-
distribution function relevant when individuals face a competing risk 
of death [14].

An event-free survival analysis involves modelling the distribution 
of the time in state 0. Let E denote the time that state zero is left 
and  ( ) ( )eF t P E t= ≤  be the corresponding cumulative distribution 
function. Then

1 2( ) ( ) ( )e d dF t F t F t= +      
so the probability of experiencing the event or death can be decomposed 
into the two causes of failure. These may then be used to compute 
NNT-like quantities which can be interpreted together.
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0                            30                            60                            90                          120                          150                         180

DAYS   SINCE RANDOMIZATION

N
U

M
B

E
R

S
 N

E
E

D
E

D
  T

O
  T

R
E

AT
 (N

N
T)

120

100

80

60

40

20

0

Figure 3: Number needed to treat estimates for the first exacerbation (solid 
line).  Dotted line indicates the 95% confidence interval bands.

 

0            30           60           90          120         150         180 0            30           60           90          120         150         180

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

120

100

80

60

40

20

0

DAYS  SINCE RANDOMIZATION DAYS  SINCE RANDOMIZATION

E
X

P
E

C
TE

D
  N

U
M

B
E

R
  O

F 
 E

X
A

C
E

R
B

AT
IO

N
S

N
U

M
B

E
R

S
  N

E
E

D
E

D
  T

O
  T

R
E

AT
  (

N
N

TE
)

NELSEN - AALEN  ESTIMATE
PARAMETRIC  ESTIMATE

PLACEBO

rhDNase

Figure 4: Nelson-Aalen estimates and corresponding parametric (time 
homogeneous) estimates of the cumulative mean functions (left panel) for 
placebo and rhDNase treated individuals, respectively, and the number 
needed to treat for all events   (right panel).



Citation: Cook RJ (2013) Number Needed to Treat for Recurrent Events. J Biomet Biostat 4: 167. doi:10.4172/2155-6180.1000167

J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 5 of 6

Volume 4 • Issue 3 • 1000167

Let Di  denote the time of death for individual i and let the “survivor” 
function be ( ) ( ).iS t P D t= ≥   

In a two-sample problem the number needed to treat to expect to 
prevent a death by time t is 1

0 1( ) [(1 ( )) (1 ( ))]n t S t S t −= − − −  where ( )jS t  
is the survivor function for individuals in group j, j=0, 1. With this 
number of patients one can also compute the expected number of non-
fatal events prevented as

01 11( )[ ( ) ( )]d dn t F t F t−      

where 1 ( )d
jF t  is the cumulative incidence function for the intermediate 

event in group j, j=0,1.

We let ( ) ( ) ( )i i iY t Y t I D t= ≥  indicate that individual i is alive 
and on study at time t and let † ( ) 1idN s =  if individual i dies at 
time s and be zero otherwise. The Kaplan-Meier estimate of  ( )S t  
is †

(0, ]
ˆ ˆ( ) (1 ( ))tS t dH u= −∏  where † †ˆ ( ) ( ) / ( )dH u dN u Y t⋅ ⋅=  where 

† †
1

( ) ( ) ( )m
i ii

dN u Y u dN u⋅ =
=∑   and  

1
( ) ( ).m

ii
Y t Y u⋅ =

=∑
Recurrent and terminal events

Recurrent events are frequently of interest in settings where 
patients are at high risk for a different type of event which terminates 
the recurrent event process. Examples include studies of skeletal 
complications among patients with cancer metastatic to bone [15], 
transplant studies where graft rejection episodes may be terminated by 
total graft rejection [16], and chronic obstructive pulmonary disease 
(COPD) where patient may experience multiple exacerbations over 
time but may also die [3]. Figure 5 contains a multistate diagram 
reflecting this setting. Some clinical trials involving these complex 
outcomes have endeavoured to compute the number needed to treat 
and we discuss issues and strategies here.

Cook and Lawless [7] defined a modified rate function which gave 
the expected number of events at time u conditional on survival time u, 
0<u; this is denoted by  *( ) { ( ) | }.i id u E dN u D uµ = ≥  Then the marginal 
expected number of events over an interval  (0, ]t , accounting for the 
possible realization of the terminating event precluding subsequent 
recurrent events, is the survival adjusted mean function

* *

0

( ) { ( )} ( ) ( ).
t

it E N t S u d uµ µ= = ∫                  (11)

This can be estimated by replacing the unknown quantities with 
their empirical estimates where ( )S u  is replaced with the Kaplan Meier 
estimate ˆ( )S t   and *( )d uµ   is estimated naturally by

* 1

1

( ) ( )
( ) ,

( )

m
i ii

m
ii

D u dN u
d u

D u
µ =

=

= ∑
∑

                                    (12)

which is simply the number of events observed at time u divided by 
the number at risk at time u. It may be tempting to adapt (Equation 6) 
and define

*
* *
0 1

1ˆ ( )
ˆ ˆ( ) ( )

v t
t tµ µ

=
−                     (13)

as the number needed to treat to prevent one recurrent event adjusting, 
or accounting, for the terminal event, death. This is a too simplistic way 
of exploring the consequences of treatment in this case since one way 
a treatment may reduce the expected number of recurrent events is by 
increasing the mortality rate. One must therefore jointly consider the 
consequences of treatment adoption for both the recurrent event and 
the terminal event (e.g. survival). We describe two such approaches in 
the following section.

An Approach when recurrent events are of secondary interest

The number of individuals needed to treat to expect to save one life 
over  (0, ]t  is 1

0 1
ˆ ˆ( ) [ ( ) ( )] .d dn t F t F t −= −   As a consequence of treating this 

many individuals, one would expect to prevent 
* *
0 1( )( ( ) ( ))n t t tµ µ−      

events.

An approach when recurrent events are of primary interest

One may compute the number needed to treat to prevent one event 
as before as

* *
0 1

1( ) .
( ) ( )

v t
t tµ µ

=
−      

With this number treated, one would expect to save 

0 1( )[(1 ( )) (1 ( ))]v t S t S t− − −  lives. Of course in some cases there may 
be a beneficial treatment effect on the recurrent event process and a 
detrimental effect on the mortality, so care must be taken in choosing 
how to express these effects.

Discussion
In this article we have considered strategies for adapting NNT-like 

measures for the analysis of more complex life history responses. We 
consider recurrent events, competing risks and recurrent and terminal 
events. The latter two situations raise challenges in that two different 
types of events may both be important and it is essential to consider 
them together. As in the case with simple binary responses, the idea of 
computing NNT-like measures is to express treatment effects in terms 
that clinical researchers may relate to more naturally. It is possible that 
in more complex settings NNT-like measures may not be suitable.

Because these statistics are based on absolute differences they are 
natural when examining economic implications of any health policy 
decisions. They have played a useful role, for example, in considering 
whether effective treatments with known costs and adverse outcome 
profiles should be used [17]. They can also be used in concert with 
measures like the number needed to harm when considering potentially 
toxic therapies or high risk interventions.
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